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Abstract
Large Language Models (LLMs) have achieved impressive results

in various tasks but struggle with hallucination problems and lack

of relevant knowledge, especially in deep complex reasoning and

knowledge-intensive tasks. Knowledge Graphs (KGs), which cap-

ture vast amounts of facts in a structured format, offer a reliable

source of knowledge for reasoning. However, existing KG-based

LLM reasoning methods face challenges like handling multi-hop

reasoning, multi-entity questions, and effectively utilizing graph

structures. To address these issues, we propose Paths-over-Graph

(PoG), a novel method that enhances LLM reasoning by integrating

knowledge reasoning paths from KGs, improving the interpretabil-

ity and faithfulness of LLM outputs. PoG tackles multi-hop and

multi-entity questions through a three-phase dynamic multi-hop

path exploration, which combines the inherent knowledge of LLMs

with factual knowledge from KGs. In order to improve the efficiency,

PoG prunes irrelevant information from the graph exploration first

and introduces efficient three-step pruning techniques that incor-

porate graph structures, LLM prompting, and a pre-trained lan-

guage model (e.g., SBERT) to effectively narrow down the explored

candidate paths. This ensures all reasoning paths contain highly

relevant information captured from KGs, making the reasoning

faithful and interpretable in problem-solving. PoG innovatively

utilizes graph structure to prune the irrelevant noise and represents

the first method to implement multi-entity deep path detection on

KGs for LLM reasoning tasks. Comprehensive experiments on five

benchmark KGQA datasets demonstrate PoG outperforms the state-

of-the-art method ToG across GPT-3.5-Turbo and GPT-4, achieving

an average accuracy improvement of 18.9%. Notably, PoG with

GPT-3.5-Turbo surpasses ToG with GPT-4 by up to 23.9%.
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1 Introduction
Large Language Models (LLMs) have demonstrated remarkable

performance in various tasks [4, 6, 8, 16, 41]. These models lever-

age pre-training techniques by scaling to billions of parameters

and training on extensive, diverse, and unlabelled data [33, 41].

Despite these impressive capabilities, LLMs face two well-known

challenges. First, they struggle with deep and responsible reasoning

when tackling complex tasks [19, 32, 39]. Second, the substantial

cost of training makes it difficult to keep models updated with

the latest knowledge [37, 46], leading to errors when answering

questions that require specialized information not included in their

training data. For example, in Figure 1(a), though models like GPT

can generate reasonable answers for knowledge-specific questions,

these answers may be incorrect due to outdated information or

hallucination of reasoning on LLM inherent Knowledge Base (KB).

To deal with the problems of error reasoning and knowledge

gaps, the plan-retrieval-answering method has been proposed

[25, 27, 54]. In this approach, LLMs are prompted to decompose

complex reasoning tasks into a series of sub-tasks, forming a plan.
Simultaneously, external KBs are retrieved to answer each step of

the plan. However, this method still has the issue of heavily relying

on the reasoning abilities of LLMs rather than the faithfulness

of the retrieved knowledge. The generated reasoning steps guide

information selection, but answers are chosen based on the LLM’s

interpretation of the retrieved knowledge rather than on whether

the selection leads to a correct and faithful answer.
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Question: What country bordering France contains an airport that serves Nijmegen?

GPT-3.5/GPT-4 
LLM only  Belgium

LLM empowered KG
exploration search 

(Chain of Thoughts prompt): Let's go step by step.
Response: Nijmegen is served by airports in the neighboring countries, and one of the closest
major ones is Brussels Airport (BRU) in Belgium, which is relatively near Nijmegen compared to
other major airports. The answer is Belgium.

Netherlands

(ToG):  Exlporated triples: [France, location.location.containedby, Europe], [France, location.loca-
tion.containedby, Western Europe], [France, location.location.geolocation, Unnamed Entity],[Nij-
megen, second_level_division, Netherland]
Answering: First, Nijmegen is a city in the Netherlands. Second, the Netherlands is a country
bordering France. The answer is {Netherlands}

LLM empowered KG
subgraph answering

Refuse to
answering

(MindMap): MindMap cannot prompt LLM to construct a graph and generate the graph descript
document since the retrieved subgraph is extremely large and dense.

+ +

PoG

+

+ ... +

Question Analysis

Subgraph Detection

Reasoning Path 
Exploration

Reasoning Path 
Pruning

Germany

(PoG) Reasoning paths:

Response: From the provided knowledge graph path, the entity   {Germany} is the country that
contains an airport serving Nijmegen and is also the country bordering France. Therefore, the
answer to the main question "What country bordering France contains an airport that serves
Nijmegen?" is {Germany}.

+ KG 
Triples

(a)

(b)

(c)

(d)

Nijmegen

France

Figure 1: Representative workflow of four LLM reasoning
paradigms.

To address these challenges, incorporating external knowledge

sources like Knowledge Graphs (KGs) is a promising solution to

enhance LLM reasoning [26, 27, 29, 37]. KGs offer abundant factual

knowledge in a structured format, serving as a reliable source to

improve LLM capabilities. Knowledge Graph Question Answering

(KGQA) serves as an approach for evaluating the integration of KGs

with LLMs, which requires machines to answer natural language

questions by retrieving relevant facts from KGs. These approaches

typically involve: (1) identifying the initial entities from the ques-

tion, and (2) iteratively retrieving and refining inference paths until

sufficient evidence has been obtained. Despite their success, they

still face challenges such as handling multi-hop reasoning problems,

addressing questions with multiple topic entities, and effectively

utilizing the structural information of graphs.

Challenge 1: Multi-hop reasoning problem. Current methods [15,

28, 37, 50], such as the ToG model presented in Figure 1(b), begin

by exploring from each topic entity, with LLMs selecting connected

knowledge triples like (France, contained_by, Europe). This
process relies on the LLM’s inherent understanding of these triples.

However, focusing on one-hop neighbors can result in plausible but

incorrect answers and prematurely exclude correct ones, especially

when multi-hop reasoning is required. Additionally, multi-hop rea-

soning introduces significant computational overhead, making effi-

cient pruning essential, especially in dense and large KGs.

Challenge 2: Multi-entity question. As shown in Figure 1(b), exist-

ing work [15, 28, 37, 50] typically explores KG for each topic entity

independently. When a question involves multiple entities, these

entities are examined in separate steps without considering their

interconnections. This approach can result in a large amount of

irrelevant information in the candidate set that does not connect to

the other entities in the question, leading to suboptimal results.

Challenge 3: Utilizing graph structure. Existing methods [7, 13, 46]

often overlook the inherent graph structures when processing re-

trieved subgraphs. For example, the MindMap model in Figure 1(c)

utilizes LLMs to generate text-formatted subgraphs from KG triples,

converting them into graph descriptions that are fed back into the

LLM to produce answers. This textual approach overlooks the in-

herent structural information of graphs and can overwhelm the

LLMwhen dealing with large graphs. Additionally, during KG infor-

mation selection, most methods use in-context learning by feeding

triples into the LLM, ignoring the overall graph structure.

Contributions. In this paper, we introduce a novel method, Paths-
over-Graph (PoG). Unlike previous studies that utilize knowledge
triples for retrieval [28, 37], PoG employs knowledge reasoning

paths, that contain all the topic entities in a long reasoning length,

as a retrieval-augmented input for LLMs. The paths in KGs serve

as logical reasoning chains, providing KG-supported, interpretable

reasoning logic that addresses issues related to the lack of specific

knowledge background and unfaithful reasoning paths.

To address multi-hop reasoning problem, as shown in Figure 1(d),

PoG first performs question analysis, to extract topic entities from

questions. Utilizing these topic entities, it decomposes the com-

plex question into sub-questions and generates an LLM thinking

indicator termed "Planning". This planning not only serves as

an answering strategy but also predicts the implied relationship

depths between the answer and each topic entity. The multi-hop

paths are then explored starting from a predicted depth, enabling

a dynamic search process. Previous approaches using planning
usually retrieve information from scratch, which often confuses

LLMs with source neighborhood-based semantic information. In

contrast, our method ensures that LLMs follow accurate reasoning

paths that directly lead to the answer.

To address multi-entity questions, PoG employs a three-phase ex-

ploration process to traverse reasoning paths from the retrieved

question subgraph. All paths must contain all topic entities in the

same order as they occur in the LLM thinking indicator. In terms of

reasoning paths in KGs, all paths are inherently logical and faithful.

Each path potentially contains one possible answer and serves as

the interpretable reasoning logic. The exploration leverages the

inherent knowledge of both LLM and KG.

To effectively utilize graph structure, PoG captures the question

subgraph by expanding topic entities to their maximal depth neigh-

bors, applying graph clustering and reduction to reduce graph

search costs. In the path pruning phase, we select possible correct

answers from numerous candidates. All explored paths undergo a

three-step beam search pruning, integrating graph structures, LLM

prompting, and a pre-trained language understanding model (e.g.,

BERT) to ensure effectiveness and efficiency. Additionally, inspired

by the Graph of Thought (GoT) [4], to reduce LLM hallucination,

PoG prompts LLMs to summarize the obtained Top-𝑊max paths

before evaluating the answer, where𝑊max is a user-defined maxi-

mum width in the path pruning phase. In summary, the advantage

of PoG can be abbreviated as:
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• Dynamic deep search: Guided by LLMs, PoG dynamically ex-

tracts multi-hop reasoning paths from KGs, enhancing LLM ca-

pabilities in complex knowledge-intensive tasks.

• Interpretable and faithful reasoning: By utilizing highly

question-relevant knowledge paths, PoG improves the inter-

pretability of LLM reasoning, enhancing the faithfulness and

question-relatedness of LLM-generated content.

• Efficient pruning with graph structure integration: PoG
incorporates efficient pruning techniques in both the KG and

reasoning paths to reduce computational costs, mitigate LLM

hallucinations caused by irrelevant noise, and effectively narrow

down candidate answers.

• Flexibility and effectiveness: a) PoG is a plug-and-play frame-

work that can be seamlessly applied to various LLMs and KGs. b)

PoG allows frequent knowledge updates via the KG, avoiding the

expensive and slow updates required for LLMs. c) PoG reduces

the LLMs token usage by over 50% with only a ±2% difference

in accuracy compared to the best-performing strategy. d) PoG

achieves state-of-the-art results on all the tested KGQA datasets,

outperforming the strong baseline ToG by an average of 18.9% ac-

curacy using both GPT-3.5 and GPT-4. Notably, PoGwith GPT-3.5

can outperform ToG with GPT-4 by up to 23.9%.

2 Related Work
KG-based LLM reasoning. KGs provide structured knowledge

valuable for integrationwith LLMs [29]. Early studies [25, 27, 30, 52]

embed KG knowledge into neural networks during pre-training or

fine-tuning, but this can reduce explainability and hinder efficient

knowledge updating [29]. Recent methods combine KGs with LLMs

by converting relevant knowledge into textual prompts, often ig-

noring structural information [29, 46]. Advanced works [17, 28, 37]

involve LLMs directly exploring KGs, starting from an initial entity

and iteratively retrieving and refining reasoning paths until the

LLM decides the augmented knowledge is sufficient. However, by

starting from a single vertex and ignoring the question’s position

within the KG’s structure, these methods overlook multiple topic

entities and the explainability provided by multi-entity paths.

Reasoning with LLM prompting. LLMs have shown significant

potential in solving complex tasks through effective prompting

strategies. Chain of Thought (CoT) prompting [45] enhances rea-

soning by following logical steps in few-shot learning. Extensions

like Auto-CoT [53], Complex-CoT [10], CoT-SC [44], Zero-Shot

CoT [21], ToT [48], and GoT [4] build upon this approach. However,

these methods often rely solely on knowledge present in training

data, limiting their ability to handle knowledge-intensive or deep

reasoning tasks. To solve this, some studies integrate external KBs

using plan-and-retrieval methods such as CoK [25], RoG [27], and

ReAct [49], decomposing complex questions into subtasks to re-

duce hallucinations. However, they may focus on the initial steps of

sub-problems and overlook further steps of final answers, leading

to locally optimal solutions instead of globally optimal ones. To

address these deep reasoning challenges, we introduce dynamic

multi-hop question reasoning. By adaptively determining reason-

ing depths for different questions, we enable the model to handle

varying complexities effectively.

KG information pruning. Graphs are widely used to model com-

plex relationships among different entities [22, 23, 35, 40]. KGs

contain vast amounts of facts [14, 42, 47], making it impractical

to involve all relevant triples in the context of the LLM due to

high costs and potential noise [43]. Existing methods [17, 28, 37]

typically identify initial entities and iteratively retrieve reasoning

paths until an answer is reached, often treating the LLM as a func-

tion executor and relying on in-context learning or fine-tuning,

which is expensive. Some works attempt to reduce pruning costs.

KAPING [2] projects questions and triples into the same seman-

tic space to retrieve relevant knowledge via similarity measures.

KG-GPT [20] decomposes complex questions, matches, and selects

the relevant relations with sub-questions to form evidence triples.

However, these methods often overlook the overall graph structure

and the interrelations among multiple topic entities, leading to

suboptimal pruning and reasoning performance.

3 Preliminary
Consider a Knowledge Graph (KG) G(E,R,T), where E, R and T
represent the set of entities, relations, and knowledge triples, respec-

tively. Each knowledge triple𝑇 ∈ T encapsulates the factual knowl-

edge in G, and is represented as 𝑇 = (𝑒ℎ, 𝑟 , 𝑒𝑡 ), where 𝑒ℎ, 𝑒𝑡 ∈ E
and 𝑟 ∈ R. Given an entity set ES ⊆ E, the induced subgraph of

ES is denoted as S = (ES,RS,TS), where T𝑆 = {(𝑒, 𝑟, 𝑒′) ∈ T |
𝑒, 𝑒′ ∈ E𝑆 }, and R𝑆 = {𝑟 ∈ R | (𝑒, 𝑟, 𝑒′) ∈ T𝑆 }. Furthermore, we

denote D(𝑒) and D(𝑟 ) as the sets of short textual descriptions for
each entity 𝑒 ∈ E and each relation 𝑟 ∈ R, respectively. For exam-

ple, the text description of the entity “m.0f8l9c” is D(“m.0f8l9c”)=

“France”. For simplicity, in this paper, all entities and relations are

referenced through their D representations and transformed into

natural language.

Definition 1 (Reasoning Path). Given a KGG, a reasoning path
withinG is defined as a connected sequence of knowledge triples, repre-
sented as: 𝑝𝑎𝑡ℎG (𝑒1, 𝑒𝑙+1) = {𝑇1,𝑇2, ...,𝑇𝑙 } = {(𝑒1, 𝑟1, 𝑒2), (𝑒2, 𝑟2, 𝑒3)
, ..., (𝑒𝑙 , 𝑟𝑙 , 𝑒𝑙+1)} , where 𝑇𝑖 ∈ T denotes the 𝑖-th triple in the path
and 𝑙 denotes the length of the path, i.e., 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑎𝑡ℎG (𝑒1, 𝑒𝑙+1)) = 𝑙 .

Example 1. Consider a reasoning path between "University" and
"Student" in KG: 𝑝𝑎𝑡ℎG (University, Student) = {(University,
employs, Professor), (Professor, teaches, Course), (Course,
enrolled_in, Student)}, and can be visualized as:

University
employs
−−−−−−→ Professor

teaches−−−−−→ Course
enrolled_in−−−−−−−−−→ Student.

It indicates that a “University" employs a “Professor," who teaches a
“Course," in which a "Student" is enrolled. The length of the path is 3.

For any entity 𝑠 and 𝑡 in G, if there exists a reasoning path

between 𝑠 and 𝑡 , we say 𝑠 and 𝑡 can reach each other, denoted as

𝑠 ↔ 𝑡 . The distance between 𝑠 and 𝑡 in G, denoted as 𝑑𝑖𝑠𝑡G (𝑠, 𝑡),
is the shortest reasoning path distance between 𝑠 and 𝑡 . For the

non-reachable vertices, their distance is infinite. Given a positive

integer ℎ, the ℎ-hop neighbors of an entity 𝑠 in G is defined as

𝑁G (𝑠, ℎ) = {𝑡 ∈ E|𝑑𝑖𝑠𝑡G (𝑠, 𝑡) ≤ ℎ}.

Definition 2 (Entity Path). Given a KG G and a list of entities
𝑙𝑖𝑠𝑡𝑒 = [𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑙 ], the entity path of 𝑙𝑖𝑠𝑡𝑒 is defined as a con-
nected sequence of reasoning paths, which is denoted as 𝑝𝑎𝑡ℎG (𝑙𝑖𝑠𝑡𝑒 )
= {𝑝𝑎𝑡ℎG (𝑒1, 𝑒2), 𝑝𝑎𝑡ℎG (𝑒2, 𝑒3), . . . , 𝑝𝑎𝑡ℎG (𝑒𝑙−1, 𝑒𝑙 )} = {(𝑒𝑠 , 𝑟 , 𝑒𝑡 )
| (𝑒𝑠 , 𝑟 , 𝑒𝑡 ) ∈ 𝑝𝑎𝑡ℎG (𝑒𝑖 , 𝑒𝑖+1) ∧ 1 ≤ 𝑖 < 𝑙}.
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Indicator

Paths_Set

Fuzzy Selection

location.administrative_division,
containedby

nearby
airportsNijmegen France

olympic.
athletesNetherlands athlete.

affiliation
UnnamedEntity, ...

participating
countries

 2000, 2002.1924
Olympics

country

containedby Kingdom of the
Netherlands

time
zones

 Veghel,Strijen, 
Rhenen,Oostzaan

in_this
time_zone

 Central European
Time Zone

contain

 Europe, Western
Europe

containedby

airport_typeWeeze
Airport

continent

adjoin_sGermany

airports of 
this type

Public
airport

containedbyLyon–Saint
Exupéry
Airport

adjoin_s

UnnamedEntitiy

Ryanair user.topics

user.topics
Wiredsecond_level_division

Question:
What country bordering
France contains an airport
that serves Nijmegen?

Topic Entity
Recognition

LLM Supplement Path
Exploration

Node Expand Exploration

AnswerYes!

No

Path Pruning

Path
Summarizing 

Question Answering 

Topic Entity Path
Exploration

Question
Subgraph
Detection

Branch Reduced SelectionPrecise Path Selection

InitializationExploration

Split Questions,
LLM indicator,

Ordered Entities

Figure 2: Overview of the PoG architecture. Exploration: After initialization (detailed in Figure 3), the model retrieves entity
paths from G𝑞 through three exploration phases. Path Pruning: PoG applies a three-step beam search to prune paths after each
exploration phase. Question Answering: The pruned paths are then evaluated for question answering. If these paths do not
fully answer the question, the model explores deeper paths until 𝐷𝑚𝑎𝑥 is reached or moves on to the next exploration phase.

Knowledge Graph Question Answering (KGQA) is a fundamental

reasoning task based on KGs. Given a natural language question

𝑞 and a KG G, the objective is to devise a function 𝑓 that predicts

answers 𝑎 ∈ 𝐴𝑛𝑠𝑤𝑒𝑟 (𝑞) utilizing knowledge encapsulated in G,
i.e., 𝑎 = 𝑓 (𝑞,G). Consistent with previous research [27, 28, 36, 37],

we assume the topic entities 𝑇𝑜𝑝𝑖𝑐 (𝑞) mentioned in 𝑞 and answer

entities 𝐴𝑛𝑠𝑤𝑒𝑟 (𝑞) in ground truth are linked to the corresponding

entities in G, i.e., 𝑇𝑜𝑝𝑖𝑐 (𝑞) ⊆ E and 𝐴𝑛𝑠𝑤𝑒𝑟 (𝑞) ⊆ E.

4 Method
PoG implements the “KG-based LLM Reasoning" by first exploring

all possible faithful reasoning paths and then collaborating with

LLM to perform a 3-step beam search selection on the retrieved

paths. Compared to previous approaches [28, 37], our model fo-

cuses on providing more accurate and question-relevant retrieval-

argument graph information. The framework of PoG is outlined in

Figure 2, comprising four main components.

• Initialization. The process begins by identifying the set of topic
entities from the question input, and then queries the source KG

G by exploring up to 𝐷max-hop from each topic entity to con-

struct the evidence sub-graph G𝑞 , where𝐷max is the user-defined

maximum exploration depth. Subsequently, we prompt the LLM

to analyze the question and generate an indicator that serves as

a strategy for the answer formulation process and predicting the

exploration depth 𝐷
predict

.

• Exploration.After initialization, the model retrieves topic entity

paths fromG𝑞 through three exploration phases: topic entity path
exploration, LLM supplement path exploration, and node expand

exploration. All reasoning paths are constrained within the depth

range 𝐷 ∈ [𝐷
predict

, 𝐷max].
• Path Pruning. Following each exploration phase, PoG employs

a pre-trained LM, LLM prompting, and graph structural analysis

to perform a three-step beam search. The pruned paths are then

evaluated in the question answering.

• Question Answering. Finally, LLM is prompted to assess if the

pruned reasoning paths sufficiently answer the question. If not,

continue exploration with deeper paths incrementally until the

𝐷max is exceeded or proceed to the next exploration phase.

4.1 Initialization
The initialization has two main stages, i.e., question subgraph de-

tection and question analysis. The framework is shown in Figure 3.

Question subgraph detection. Given a question 𝑞, PoG initially

identifies the question subgraph, which includes all the topic entities

of 𝑞 and their 𝐷max-hop neighbors.

Topic entity recognition. To identify the relevant subgraph, PoG

first employs LLMs to extract the potential topic entities from the

question. Following the identification, the process applies BERT-

based similarity matching to align these potential entities with

entities from KG. Specifically, as shown in Figure 3, we encode both

the keywords and all entities fromKG into dense vector embeddings

as𝐻𝑇 and𝐻G . We then compute a cosine similarity matrix between

these embeddings to determine the matches. For each keyword, the

entities with the highest similarity scores are selected to form the

set 𝑇𝑜𝑝𝑖𝑐 (𝑞). This set serves as the foundation for constructing the

question subgraph in subsequent steps.
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Graph DetectionNode and Relation
Clustering

Graph Reduction

Question:
What country bordering
France contains an airport
that serves Nijmegen?

Country 
France
Airport

Nijmegen

Topic Entity: 
France

Nijmegen

LLM Indictor:

Split_question1: What country contains an airport that serves Nijmegen?
Split_question2: What country borders France?

Question Analysis

Input:

Output1:

Output2:

+

Knowledge
Graph

France Nijmegen

Figure 3: Overview of the initialization phase. Output 1: from the input question, the model identifies topic entities and prompts
the LLM to decompose questions into split questions 𝑞𝑠𝑝𝑙𝑖𝑡 and generate an indicator 𝐼𝐿𝐿𝑀 . The indicator outlines a strategy for
formulating the answer and predicts the exploration depth 𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡 . Output 2: the model queries the source KG up to 𝐷𝑚𝑎𝑥 -hop
from identified topic entities, constructing and pruning the evidence subgraph G𝑞 .

Subgraph detection. Upon identifying the topic entities, PoG cap-

tures the induced subgraph G𝑞 ⊆ G by expanding around each

entity 𝑒 in 𝑇𝑜𝑝𝑖𝑐 (𝑞). For each entity, we retrieve knowledge triples

associated with its 𝐷max-hop neighbors, thereby incorporating

query-relevant and faithful KG information into G𝑞 . Through this

process, we update E𝑞 with newly added intermediate nodes that

serve as bridging pathways between the topic entities. The result

subgraph, G𝑞 is defined as (E𝑞,R𝑞,T𝑞), where E𝑞 encompasses

𝑇𝑜𝑝𝑖𝑐 (𝑞) together with the set {𝑁G (𝑒, 𝐷max) | 𝑒 ∈ 𝑇𝑜𝑝𝑖𝑐 (𝑞)}, ef-
fectively linking all relevant entities and their connective paths

within the defined hop distance. To interact with KG, we utilize the

pre-defined SPARQL queries as detailed in Appendix D.

Graph pruning. To efficiently manage information overhead and

reduce computational cost, we implement graph pruning on the

question subgraph G𝑞 using node and relation clustering along-

side graph reduction techniques. As illustrated in Figure 3, node

and relation clustering is achieved by compressing multiple nodes

and their relations into supernodes, which aggregate information

from the original entities and connections. For graph reduction, we

employ bidirectional BFS to identify all paths connecting the topic

entities. Based on these paths, we regenerate induced subgraphs

that involve only the relevant connections, effectively excluding

nodes and relations that lack strong relevance to the topic entities.

Question analysis. To reduce hallucinations in LLMs, the question

analysis phase is divided into two parts and executed within a single

LLM call using an example-based prompt (shown in Appendix E).

First, the complex question 𝑞 is decomposed into simpler questions

based on the identified topic entities, each addressing their relation-

ship to the potential answer. Addressing these simpler questions

collectively guides the LLM to better answer the original query,

thereby reducing hallucinations. Second, a LLM indicator is gen-

erated, encapsulating all topic entities and predicting the answer

position within a single chain of thought derived from the original

question. This indicator highlights the relationships and sequence

among the entities and answer. Based on this, a predicted depth

𝐷
predict

is calculated, defined as the maximum distance between

the predicted answer and each topic entity. An example of question

analysis is shown in Figure 3 with predicted depth 2.

4.2 Exploration
As discussed in Section 1, identifying reasoning paths that encom-

pass all topic entities is essential to derive accurate answers. These

paths serve as interpretable chains of thought, providing both the

answer and the inference steps leading to it, a feature we refer as in-
terpretability. To optimize the discovery of such paths efficiently

and accurately, the exploration process is divided into three phases:

topic entity path exploration, LLM supplement path exploration,

and node expand exploration. After each phase, we perform path

pruning and question answering. If a sufficient path is found, the

process terminates; otherwise, it advances to the next phase to ex-

plore additional paths. Due to the space limitation, the pseudo-code

of exploration section is shown in Appendix A.1.

Topic entity path exploration. To reduce LLM usage and search

space, PoG begins exploration from a predicted depth𝐷
predict

rather

than the maximum depth. Using the question subgraph G𝑞 , topic
entities 𝑇𝑜𝑝𝑖𝑐 (𝑞), LLM indicator 𝐼LLM, and 𝐷

predict
, PoG identifies

reasoning paths containing all topic entities by iteratively adjusting

the exploration depth 𝐷 . Entities in𝑇𝑜𝑝𝑖𝑐 (𝑞) are ordered according
to 𝐼LLM to facilitate reasoning effectively. Starting from the pre-

dicted depth 𝐷 = 𝑚𝑖𝑛(𝐷
predict

, 𝐷max), we employ a bidirectional

BFS to derive all potential entity paths, which is defined as:

𝑃𝑎𝑡ℎ𝑠𝑡 = {𝑝 | |𝑇𝑜𝑝𝑖𝑐 (𝑞) | × (𝐷 − 1)<𝑙𝑒𝑛𝑔𝑡ℎ(𝑝)≤ |𝑇𝑜𝑝𝑖𝑐 (𝑞) | × 𝐷},

where 𝑝 = 𝑃𝑎𝑡ℎG𝑞 (𝑇𝑜𝑝𝑖𝑐 (𝑞)). To reduce the complexity, a prun-

ing strategy is employed and selects the top-𝑊max paths based

on 𝑃𝑎𝑡ℎ𝑠𝑡 , 𝐼LLM, and split questions from Section 4.1. These paths

are evaluated for sufficiency verification. If inadequate, 𝐷 is incre-

mented until 𝐷max is reached. Then the next phase commences.
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LLM supplement path exploration. Traditional KG-based LLM

reasoning often rephrases KG facts without utilizing the LLM’s

inherent knowledge. To overcome this, PoG prompts LLMs to

generate predictions based on path understanding and its im-

plicit knowledge, providing additional relevant insights. It involves

generating new LLM thinking indicators 𝐼Sup for predicted en-

tities 𝑒 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 (𝑞), and then using text similarity to verify

and align them with E𝑞 ∈ G𝑞 . The supplementary entity list

𝐿𝑖𝑠𝑡𝑆 (𝑒) = 𝑇𝑜𝑝𝑖𝑐 (𝑞) + 𝑒 is built and ranked by 𝐼Sup to facilitate

reasoning effectively. Next, supplementary paths 𝑃𝑎𝑡ℎ𝑠𝑠 are de-

rived from 𝐿𝑖𝑠𝑡𝑆 (𝑒) in the evidence KG G𝑞 with a fixed depth 𝐷max:

𝑃𝑎𝑡ℎ𝑠𝑠 = {𝑝 | length(𝑝) ≤ |𝑇𝑜𝑝𝑖𝑐 (𝑞) | × 𝐷max},

where 𝑝 = 𝑃𝑎𝑡ℎG𝑞 (𝐿𝑖𝑠𝑡𝑆 (𝑒)). These paths with new indicators are

evaluated similarly to the topic entity path exploration phase. The

prompting temple is shown in Appendix E.

Node expand exploration. If previous phases cannot yield suf-

ficient paths, PoG proceeds to node expansion. Unlike previous

methods [28, 37] that separately explore relations and entities, PoG

explores both simultaneously, leveraging clearer semantic infor-

mation for easier integration with existing paths. During the ex-

ploration, PoG expands unvisited entities by 1-hop neighbors in G.
New triples are merged into existing paths to form the new paths,

followed by pruning and evaluation.

4.3 Path Pruning
As introduced in Section 2, KGs contain vast amounts of facts,

making it impractical to involve all relevant triples in the LLM’s

context due to high costs. To address this complexity and reduce

LLM overhead, we utilize a three-step beam search for path pruning.

The corresponding pseudo-code can be found in Appendix A.2.

Fuzzy selection. Considering that only a small subset of the gen-

erated paths is relevant, the initial step of our beam search involves

fuzzy selection by integrating a pre-trained language model (e.g.

SentenceBERT [34]), to filter the irrelevant paths quickly. As shown

in Figure 2, we encode the LLM indicator 𝐼LLM (or 𝐼Sup) and all

reasoning paths into vector embeddings, denoted as 𝐻𝐼 and 𝐻𝑃𝑎𝑡ℎ𝑠 ,

and calculate cosine similarities between them. The top-𝑊1 paths

with the highest similarity scores are selected for further evaluation.

Precise path selection. Following the initial fuzzy selection, the

number of candidate paths is reduced to 𝑊1. At this stage, we

prompt the LLM to select the top-𝑊max reasoning paths most likely

to contain the correct answer. The specific prompt used to guide

LLM in selection phase can be found in Appendix E.

Branch reduced selection. Considering that paths are often rep-

resented in natural language and can be extensive, leading to high

processing costs for LLMs, we implement a branch reduced se-

lection method integrated with the graph structure. This method

effectively balances efficiency and accuracy by further refining path

selection. Starting with 𝐷 = 1, for each entity 𝑒 in the entity list, we

extract the initial 𝐷-step paths from every path in the candidate set

𝑃𝑎𝑡ℎ𝑠𝑐 into a new set 𝑃𝑎𝑡ℎ𝑠𝑒 . If the number of 𝑃𝑎𝑡ℎ𝑠𝑒 exceeds the

maximum designated width𝑊max, these paths are pruned using

precise path selection. The process iterates until the number of

paths in 𝑃𝑎𝑡ℎ𝑠𝑐 reaches 𝐷max. For example, as illustrated in Figure

2, with𝑊max = 1, only the initial step paths (depicted in green)

are extracted for further examination, while paths represented by

dashed lines are pruned. This selection method enables efficient

iterative selection by limiting the number of tokens and ensuring

the relevance and conciseness of the reasoning paths.

Beam search strategy. Based on the three path pruning methods

above, PoG can support various beam search strategies, ranging

from non-reliant to fully reliant on LLMs. These strategies are

selectable in a user-friendly manner, allowing flexibility based on

the specific requirements of the task. We have defined four such

strategies in Algorithm 2 of Appendix A.2.

4.4 Question Answering
Based on the pruned paths in Section 4.3, we introduce a two-step

question-answering method.

Path Summarizing. To address hallucinations caused by paths

with excessive or incorrect text, we develop a summarization strat-

egy by prompting LLM to review and extract relevant triples from

provided paths, creating a concise and focused path. Details of the

prompts used are in Appendix E.

Question answering. Based on the current reasoning path derived

from path pruning and summarizing, we prompt the LLM to first

evaluate whether the paths are sufficient for answering the split

question and then the main question. If the evaluation is positive,

LLM is prompted to generate the answer using these paths, along

with the question and question analysis results as inputs, as shown

in Figures 2. The prompts for evaluation and generation are detailed

in Appendix E. If the evaluation is negative, the exploration process

is repeated until completion. If node expand exploration reaches its

depth limit without yielding a satisfactory answer, LLM will lever-

age both provided and inherent knowledge to formulate a response.

Additional details on the prompts can be found in Appendix E.

5 Experiments
Experimental settings. We evaluate PoG on five KGQA datasets,

i.e., CWQ [38], WebQSP [51], GrailQA [12], SimpleQuestions [31],

and WebQuestions [3]. PoG is tested against methods without ex-

ternal knowledge (IO, CoT[45], SC[44]) and the state-of-the-art

(SOTA) approaches with external knowledge, including prompting-

based and fine-tuning-based methods. Freebase [5] serves as the

background knowledge graph for all datasets. Experiments are con-

ducted using two LLMs, i.e., GPT-3.5 (GPT-3.5-Turbo) and GPT-4.

Following prior studies, we use exact match accuracy (Hits@1) as

the evaluation metric. Due to the space limitation, detailed experi-

mental settings, including dataset statistics, baselines, and imple-

mentation details, are provided in Appendix C.

PoG setting. We adopt the Fuzzy + Precise Path Selection
strategy in Algorithm 2 of Appendix A.2 for PoG, with𝑊1 = 80

for fuzzy selection. Additionally, we introduce PoG-E, which ran-

domly selects one relation from each edge in the clustered question

subgraph to evaluate the impact of graph structure on KG-based

LLM reasoning.𝑊max and 𝐷max are 3 by default for beam search.

5.1 Main Results
Since PoG leverages external knowledge to enhance LLM reasoning,

we first compare it with other methods that utilize external knowl-

edge. Although PoG is a training-free, prompting-based method
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Table 1: Results of PoG across various datasets, compared with the state-of-the-art (SOTA) in Supervised Learning (SL) and
In-Context Learning (ICL) methods. The highest scores for ICL methods are highlighted in bold, while the second-best results
are underlined. The Prior FT (Fine-tuned) SOTA includes the best-known results achieved through supervised learning.

Method Class LLM Multi-Hop KGQA Single-Hop KGQA Open-Domain QA

CWQ WebQSP GrailQA Simple Questions WebQuestions

Without external knowledge

IO prompt[37] - GPT-3.5-Turbo 37.6 63.3 29.4 20.0 48.7

CoT[37] - GPT-3.5-Turbo 38.8 62.2 28.1 20.3 48.5

SC[37] - GPT-3.5-Turbo 45.4 61.1 29.6 18.9 50.3

With external knowledge

Prior FT SOTA SL - 70.4[9] 85.7[27] 75.4[11] 85.8[1] 56.3[18]

KB-BINDER[24] ICL Codex - 74.4 58.5 - -

ToG/ToG-R[37] ICL GPT-3.5-Turbo 58.9 76.2 68.7 53.6 54.5

ToG-2.0[28] ICL GPT-3.5-Turbo - 81.1 - - -

ToG/ToG-R[37] ICL GPT-4 69.5 82.6 81.4 66.7 57.9

PoG-E ICL GPT-3.5-Turbo 71.9 90.9 87.6 78.3 76.9

PoG ICL GPT-3.5-Turbo 74.7 93.9 91.6 80.8 81.8

PoG-E ICL GPT-4 78.5 95.4 91.4 81.2 82.0

PoG ICL GPT-4 81.4 96.7 94.4 84.0 84.6

and has natural disadvantages compared to fine-tuned methods

trained on evaluation data. As shown in Table 1, PoG with GPT-3.5-

Turbo still achieves new SOTA performance across most datasets.

Additionally, PoG with GPT-4 surpasses fine-tuned SOTA across

all the multi-hop and open-domain datasets by an average of 17.3%

and up to 28.3% on the WebQuestions dataset. Comparing all the in-

context learning (ICL) methods, PoG with GPT-3.5-Turbo surpasses

all the previous SOTA methods. When comparing PoG with GPT-

3.5-Turbo against SOTA using GPT-4, PoG outperforms the SOTA

by an average of 12.9% and up to 23.9%. When using the same LLM,

PoG demonstrates substantial improvements: with GPT-3.5-Turbo,

it outperforms SOTA by an average of 21.2% and up to 27.3% on

the WebQuestions dataset; with GPT-4, it outperforms SOTA by

16.6% on average and up to 26.7% on the WebQuestions dataset.

Additionally, PoG with GPT-3.5-Turbo outperforms methods with-

out external knowledge (e.g., IO, CoT, SC prompting) by 62% on

GrailQA and 60.5% on Simple Questions. These results show that

incorporating external knowledge graphs significantly enhances

reasoning tasks. PoG-E also achieves excellent results. Under GPT-4,

PoG-E surpasses all SOTA in ICL by 14.1% on average and up to

24.1% on the WebQuestions dataset. These findings demonstrate

that the graph structure is crucial for reasoning tasks, particularly

for complex logical reasoning. By integrating the structural infor-

mation of the question within the graph, PoG enhances the deep

reasoning capabilities of LLMs, leading to superior performance.

5.2 Ablation Study
We perform various ablation studies to understand the importance

of different factors in PoG. These ablation studies are performed

with GPT-3.5-Turbo on two subsets of the CWQ and WebQSP test

sets, each containing 500 randomly sampled questions.

Does search depth matter? As described, PoG’s dynamic deep

1 2 3 4
Varying maximum depth (Dmax)

50

55

60

65

70

75

80

85

A
cc

ur
ac

y
(%

)

PoG PoG-E

(a) CWQ (Vary 𝐷max)

1 2 3 4
Varying maximum depth (Dmax)

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Accuracy Total

Topic Entity Path Exploration

LLM Supplement Path Exploration

Node Expand Exploration

(b) CWQ(PoG)

1 2 3 4
Varying maximum depth (Dmax)

80

82

84

86

88

90

92

94

A
cc

ur
ac

y
(%

)

PoG PoG-E

(c) WebQSP (Vary 𝐷max)

1 2 3 4
Varying maximum depth (Dmax)

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Accuracy Total

Topic Entity Path Exploration

LLM Supplement Path Exploration

Node Expand Exploration

(d) WebQSP(PoG)

Figure 4: The accuracy of PoG and PoG-E among CWQ and
WebQSP datasets by varying different 𝐷max.

search is limited by 𝐷𝑚𝑎𝑥 . To assess the impact of 𝐷max on per-

formance, we conduct experiments with depth from 1 to 4. The

results, shown in Figures 4(a) and (c), indicate that performance

improves with increased depth, but the benefits diminish beyond a

depth of 3. Figures 4(b) and (d), showing which exploration phase

the answer is generated from, reveal that higher depths reduce the

effectiveness of both LLM-based path supplementation and node

exploration. Excessive depth leads to LLM hallucinations and dif-

ficulties in managing long reasoning paths. Therefore, we set the

maximum depth to 3 for experiments to balance performance and

computational efficiency. Additionally, even at lower depths, PoG

maintains strong performance by effectively combining the LLM’s

inherent knowledge with the structured information from the KG.
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Table 2: Performance of PoG and PoG-E on multi-entity and
single-entity questions of all datasets. The symbol ‘-’ indi-
cates no multi-entity question inside.

Question Set CWQWebQSP GrailQAWebQuestions Simple Questions

PoG with GPT-3.5-Turbo

Single-entity 70.3 93.9 92.1 81.7 78.3

Multi-entity 80.2 93.1 70.7 82.8 -

PoG-E with GPT-3.5-Turbo

Single-entity 67.5 91 88.2 76.8 80.8

Multi-entity 77.5 82.8 76.0 82.8 -

Table 3: The illustration of graph size reduction.

CWQ WebQSP GrailQAWebQuestions

Ave Entity Number 3,540,267 243,826 62,524 240,863

Ave Entity Number After Pruned 1,621,055 182,673 30,267 177,822

Ave Entitiy Reduction Proportion (%) 54% 25% 52% 26%

5.3 Effectiveness Evaluation
Effective evaluation on multi-entity questions. To evaluate

PoG’s performance on multi-entity questions, we report the accu-

racy on all test sets by categorizing questions based on the number

of topic entities. The results, shown in Table 2, demonstrate that, de-

spite the increased complexity of multi-entity questions compared

to single-entity ones, PoG maintains excellent accuracy, achieving

up to 93.9% on the WebQSP dataset. This underscores the effective-

ness of our structure-based model in handling complex multi-entity

queries. Notably, the slightly lower performance on the GrailQA

dataset can be attributed to some questions lacking matched topic

entities, which prevents effective reasoning using KG.

Effective evaluation on multi-hop reasoning. To assess PoG’s

performance on multi-hop reasoning tasks, we analyze accuracy by

categorizing questions based on the length of their ground-truth

SPARQL queries. We randomly sample 1,000 questions from CWQ

and WebQSP datasets and determine the reasoning length of each

question by counting the number of relations in their ground-truth

SPARQL queries. The distribution of questions with varying reason-

ing lengths is illustrated in Figure 5.We evaluate the performance of

PoG and PoG-E across different ground-truth lengths to understand

their effectiveness under varying query complexities. As shown in

Figure 6, the performance of PoG and PoG-E remains consistent

across different reasoning lengths. Even at the highest length levels

in the WebQSP dataset, PoG achieves excellent accuracy, reaching

up to 90%. Notably, although some questions have ground-truth

lengths of eight or more, PoG successfully addresses them with-

out matching the ground-truth length, demonstrating its ability to

explore novel paths by effectively combining the LLM’s inherent

knowledge with the structured information from the KG. These

results demonstrate the effectiveness of PoG in handling complex

multi-hop reasoning tasks.

Graph structure pruning. To evaluate the effectiveness of the

graph pruning method proposed in Section 4.1, we conduct experi-

ments using 200 random samples from each dataset. We report the

average number of entities per question before and after graph re-

duction, as well as the proportion of entities reduced, in Table 3. The

results indicate that up to 54% of entities in the CWQ dataset can be
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Figure 5: The lengths of the ground-truth SPARQL queries
within the CWQ and WebQSP datasets.
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Figure 6: The accuracy of PoG and PoG-E on the CWQ and
WebQSP datasets, categorized by the different lengths of the
ground-truth answers for each question.

pruned before path exploration. This demonstrates the effectiveness

of eliminating irrelevant data from the outset.

Case study: interpretable reasoning. We also conduct the case

study to demonstrate interpretability of PoG, we present three rea-

soning examples in Table 9 of Appendix B.5. These examples feature

questions with one, two, and three entities, respectively. Through

the case study, we showcase PoG’s effectiveness in handling multi-

entity and multi-hop tasks by providing faithful and interpretable

reasoning paths that lead to accurate answers.

To further evaluate the effectiveness and efficiency of PoG, we

perform additional experiments, including pruning beam search

strategy ablation and prompt setting ablation (Appendix B.1), rea-

soning faithfulness analysis (Appendix B.2), error analysis (Appen-

dix B.3), LLM calls cost and running time analysis (Appendix B.4),

and graph reduction and path pruning case study (Appendix B.5).

6 Conclusion
In this paper, we introduce Paths-over-Graphs (PoG), a novel

method that integrates LLMs with KGs to enable faithful and inter-

pretable reasoning. PoG addresses complex reasoning tasks through

a three-phase dynamic multi-hop path exploration, combining the

inherent knowledge of LLMs with factual information from KGs.

Efficiency is enhanced by graph-structured pruning and a three-

step pruning process to effectively narrow down candidate paths.

Extensive experiments on five public datasets demonstrate that PoG

outperforms existing baselines, showcasing its superior reasoning

capabilities and interoperability.
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A Algorithm
A.1 Exploration
We summarize the comprehensive algorithmic procedure for explo-

ration detailed in Section 4.2 as presented in Algorithm 1.

Algorithm 1: Exploration
Input : Question subgraph (G𝑞 ), source KG (G),question and split

question (𝑄 = 𝑞 + 𝑞𝑠𝑝𝑙𝑖𝑡 ), topic entities (𝑇𝑜𝑝𝑖𝑐 (𝑞)), LLM
indicator (𝐼LLM), predict depth (𝐷

predict
), maximum depth

(𝐷max), maximum width (𝑊max), and path pruning case

(𝑐𝑎𝑠𝑒)

Output : PoG answers (𝑎 (𝑞)), final reasoning path (𝑃𝑎𝑡ℎ𝑠𝑓 (𝑞))
/* Start with topic entity path exploration */

𝐿𝑖𝑠𝑡𝑇 ← Reorder(𝑇𝑜𝑝𝑖𝑐 (𝑞), 𝐼LLM), 𝐷 ← min(𝐷
predict

, 𝐷max);1

while 𝐷 ≤ 𝐷max do2

𝑃𝑎𝑡ℎ𝑠𝑡 ← EntityPathFind (𝐿𝑖𝑠𝑡𝑇 , 𝐷 ,G𝑞 );3

PathPruning(𝑃𝑎𝑡ℎ𝑠𝑡 ,𝑄, 𝐼LLM,𝑊max, 𝐷max, 𝐿𝑖𝑠𝑡𝑇 , 𝑐𝑎𝑠𝑒 ) ;4

𝐴𝑛𝑠𝑤𝑒𝑟, 𝑃𝑎𝑡ℎ𝑠𝑇 ← QuestionAnswering(𝑃𝑎𝑡ℎ𝑠𝑡 ,𝑄, 𝐼LLM ) ;5

if "{Yes}" in 𝐴𝑛𝑠𝑤𝑒𝑟 then return 𝐴𝑛𝑠𝑤𝑒𝑟, 𝑃𝑎𝑡ℎ𝑠𝑇 ;6

else 𝐷 ← 𝐷 + 1;7

/* LLM supplement path exploration procedure */

𝑃𝑎𝑡ℎ𝑠𝑠 ← [];8

𝑃𝑟𝑒𝑑𝑖𝑐𝑡 (𝑞) ←SupplementPrediction(𝑃𝑎𝑡ℎ𝑠𝑇 ,𝑄, 𝐼LLM);9

for each 𝑒, 𝐼𝑠𝑢𝑝 (𝑒 ) ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 (𝑞) do10

𝐿𝑖𝑠𝑡𝑆 ← Reorder (𝐿𝑖𝑠𝑡𝑇 + 𝑒, 𝐼𝑠𝑢𝑝 (𝑒 ) );11

𝑃𝑎𝑡ℎ𝑠′𝑠 ← EntityPathFind (𝐿𝑖𝑠𝑡𝑆 , 𝐷max,G𝑞 );12

𝑃𝑎𝑡ℎ𝑠𝑠 ← 𝑃𝑎𝑡ℎ𝑠𝑠 + FuzzySelect (𝑃𝑎𝑡ℎ𝑠′𝑠 , 𝐼𝑠𝑢𝑝 (𝑒 ) ,𝑊max);13

PathPruning(𝑃𝑎𝑡ℎ𝑠𝑠 ,𝑄, 𝐼LLM,𝑊max, 𝐷max, 𝐿𝑖𝑠𝑡𝑆 , 𝑐𝑎𝑠𝑒 ) ;14

𝐴𝑛𝑠𝑤𝑒𝑟, 𝑃𝑎𝑡ℎ𝑠𝑆 ← QuestionAnswering(𝑃𝑎𝑡ℎ𝑠𝑠 ,𝑄, 𝐼LLM ) ;15

if "{Yes}" in 𝐴𝑛𝑠𝑤𝑒𝑟 then return 𝐴𝑛𝑠𝑤𝑒𝑟, 𝑃𝑎𝑡ℎ𝑠𝑆 ;16

/* Node expand exploration procedure */

𝑉𝑖𝑠𝑡𝑒𝑑 ← ∅, 𝐷 ← 1, 𝑃𝑎𝑡ℎ𝑠𝑒 ← 𝑃𝑎𝑡ℎ𝑠𝑇 + 𝑃𝑎𝑡ℎ𝑠𝑆 ;17

PathPruning(𝑃𝑎𝑡ℎ𝑠𝑒 ,𝑄, 𝐼LLM,𝑊max, 𝐷max, 𝐿𝑖𝑠𝑡𝑇 , 𝑐𝑎𝑠𝑒 ) ;;18

while 𝐷 ≤ 𝐷max do19

for each 𝑒 ∈ ExtractEntity(𝑃𝑎𝑡ℎ𝑠𝑒 ) ∧ 𝑒 ∉ 𝑉𝑖𝑠𝑡𝑒𝑑 do20

𝑅𝑒𝑙𝑎𝑡𝑒𝑑_𝑒𝑑𝑔𝑒𝑠 = Find_1_hop_Edges(G, 𝑒 ) ;21

𝑃𝑎𝑡ℎ𝑠𝑒 ← MergeTogether(𝑃𝑎𝑡ℎ𝑠𝑒 , 𝑅𝑒𝑙𝑎𝑡𝑒𝑑_𝑒𝑑𝑔𝑒 ) ;22

PathPruning(𝑃𝑎𝑡ℎ𝑠𝑒 ,𝑄, 𝐼LLM,𝑊max, 𝐷max, 𝐿𝑖𝑠𝑡𝑇 , 𝑐𝑎𝑠𝑒 ) ;23

𝐴𝑛𝑠𝑤𝑒𝑟, 𝑃𝑎𝑡ℎ𝑠𝑒 ← QuestionAnswering(𝑃𝑎𝑡ℎ𝑠𝑒 ,𝑄, 𝐼LLM ) ;24

if "{Yes}" in 𝐴𝑛𝑠𝑤𝑒𝑟 then return 𝐴𝑛𝑠𝑤𝑒𝑟, 𝑃𝑎𝑡ℎ𝑠𝑒 ;25

else𝑉𝑖𝑠𝑡𝑒𝑑 ← 𝑉𝑖𝑠𝑡𝑒𝑑 ∪ 𝑒 ; 𝐷 ← 𝐷 + 1;26

𝑃𝑎𝑡ℎ𝑠𝑙 ← 𝑃𝑎𝑡ℎ𝑠𝑇 + 𝑃𝑎𝑡ℎ𝑠𝑆 + 𝑃𝑎𝑡ℎ𝑠𝐸 ;27

PathPruning(𝑃𝑎𝑡ℎ𝑠𝑙 ,𝑄, 𝐼LLM,𝑊max, 𝐷max, 𝐿𝑖𝑠𝑡𝑇 , 𝑐𝑎𝑠𝑒 ) ;28

𝐴𝑛𝑠𝑤𝑒𝑟, 𝑃𝑎𝑡ℎ𝑠𝐿 ← QuestionAnsweringFinal(𝑃𝑎𝑡ℎ𝑠𝑙 ,𝑄, 𝐼LLM ) ;29

Return 𝐴𝑛𝑠𝑤𝑒𝑟, 𝑃𝑎𝑡ℎ𝑠𝐿 ;30

A.2 Path Pruning
We summarize the comprehensive algorithmic procedure of path

pruning detailed in Section 4.3 as presented in Algorithm 2.

Algorithm 2: PathPruning
Input : Candidate paths(𝑃𝑎𝑡ℎ𝑠𝑐 ), question and split question

(𝑄 = 𝑞 + 𝑞𝑠𝑝𝑙𝑖𝑡 ), indicator (𝐼 ), maximum width (𝑊max),

maximum depth (𝐷max), entity list (𝑙𝑖𝑠𝑡 )

Output : Pruned candidate paths (𝑃𝑎𝑡ℎ𝑠𝑐 )

if Case = Fuzzy Selection Only then1

FuzzySelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊max ) ;2

else if Case = Fuzzy + Precise Path Selection then3

FuzzySelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊1 ) ;4

PrecisePathSelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊max ) ;5

else if Case = Fuzzy + Branch Reduced Selection then6

FuzzySelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊1 ) ;7

BranchReduceSelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊max, 𝐷max, 𝑙𝑖𝑠𝑡 ) ;8

else if Case = Fuzzy + Branch Reduced + Precise Path then9

/* case = 3-Step Beam Search */
FuzzySelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊1 ) ;
BranchReduceSelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊2, 𝐷max, 𝑙𝑖𝑠𝑡 ) ;10

PrecisePathSelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊max ) ;11

Procedure BranchReduceSelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊 ,𝐷max, 𝑙𝑖𝑠𝑡 )12

𝐷 ← 1, 𝑃𝑎𝑡ℎ𝑠𝑒 ← ∅;13

while |𝑃𝑎𝑡ℎ𝑠𝑐 | ≥𝑊 ∧𝐷 ≤ 𝐷max do14

for each 𝑒 ∈ 𝑙𝑖𝑠𝑡 do15

𝑃𝑎𝑡ℎ𝑠𝑒 ← 𝑃𝑎𝑡ℎ𝑠𝑒 ∪ ExtractHeadSteps(𝑃𝑎𝑡ℎ𝑠𝑐 , 𝑒, 𝐷 ) ;16

if |𝑃𝑎𝑡ℎ𝑠𝑒 | >𝑊 then17

PrecisePathSelect(𝑃𝑎𝑡ℎ𝑠𝑒 ,𝑄, 𝐼 ,𝑊 ) ;18

𝑃𝑎𝑡ℎ𝑠𝑐 ← IntersectMatchUpdate(𝑃𝑎𝑡ℎ𝑠𝑒 , 𝑃𝑎𝑡ℎ𝑠𝑐 ) ;19

𝑃𝑎𝑡ℎ𝑠𝑒 ← ∅;20

𝐷 ← 𝐷 + 1;21

if |𝑃𝑎𝑡ℎ𝑠𝑐 | >𝑊 then PrecisePathSelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊 ) ;22
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B Experiment
B.1 Additional Ablation Study
Compare the effect of different beam search strategies. As
introduced in Section 4.3, PoG supports various beam search strate-

gies, ranging from non-reliant to fully reliant on LLMs, selectable in

a user-friendly manner. To evaluate the computational cost and per-

formance, we test four cases outlined in Algorithm 2. In the 3-Step
Beam Search case, we set𝑊2 = 20 for internal narrowing. The

Fuzzy Selection approach, as described in Section 4.3, utilizes

all candidate paths and a LLM-generated indicator for encoding

and comparison. We report accuracy, average LLM calls in total,

and average token input during the path pruning for each beam

search strategy applied to PoG and PoG-E in Table 4 and Table 5.

These results indicate that PoG/PoG-E with Fuzzy and Precise
Path Selection achieves the highest accuracy. Additionally, the
BranchReduced Selection method, which leverages the graph

structure, not only delivers excellent results but also reduces to-

ken usage by over 50% (65%) with only a ±2% (±4.3%) difference in

accuracy on PoG (PoG-E) compared to the best-performing strat-

egy. Furthermore, the Fuzzy Selection method, which employs

lightweight models instead of relying solely on LLMs, also demon-

strates strong performance. These results validate the effectiveness

of our beam search strategies and underscore the importance of

structure-based faithful path reasoning.

Table 4: Performance comparison of PoGwith different beam
search methods on CWQ and WebQSP.

PoG Evaluation CWQ WebQSP

w/ Fuzzy Selection Accuracy 57.1 86.4

Token Input - -

LLM Calls 6.8 6.5

w/ Fuzzy and Accuracy 79.3 93.0

BranchReduced Selection Token Input 101,455 328,742

LLM Calls 9.7 9.3

w/ Fuzzy and Accuracy 81.4 93.9
Precise Path Selection Token Input 216,884 617,448

LLM Calls 9.1 7.5

w/ 3-Step Beam Search Accuracy 79.8 91.9

Token Input 102,036 369,175

LLM Calls 8.8 9.0

Howdo summary prompts affect? Inspired byGoT [4], we utilize

summary prompts to reduce LLM hallucinations and decrease com-

putational costs. To evaluate their impact, we conduct an ablation

study comparing PoG and PoG-E with and without path summa-

rization. We measure both accuracy and average token input to

the LLM API during the path pruning phase to measure efficiency

and effectiveness. The results, present in Tabel 6, show that using

graph summaries increases accuracy by up to 10% on the CWQ

dataset with PoG-E, while reducing token input by up to 36% on

WebQSP. These results indicate hat path summarization effectively

minimizes LLM hallucinations, enhances the LLM’s understanding

of the explored paths, facilitates answer retrieval, enables earlier

termination of the reasoning process, and reduces costs.

Table 5: Performance comparison of PoG-E with different
beam search methods among CWQ and WebQSP datasets.

PoG-E Evaluation CWQ WebQSP

w/ FuzzySelect Accuracy 62.31 82.3

Token Input - -

Ave LLM Calls 6 6.3

w/ Fuzzy and Accuracy 71.9 88.4

BranchReduced Selection Token Input 128,407 371,083

Ave LLM Calls 9.4 9.1

w/ Fuzzy and Accuracy 80.4 91.4
Precise Path Selection Token Input 344,747 603,261

Ave LLM Calls 8.3 7.4

w/ 3-Step Beam Search Accuracy 73.87 89.4

Token Input 120,159 411,283

Ave LLM Calls 8.3 9.1

Table 6: Performance comparison of PoG and PoG-Ewith and
without path summarizing on CWQ and WebQSP datasets.

Method Evaluation CWQ WebQSP

PoG
w/ Path Summarizing Accuracy 81.4 93.9

Token Input 216,884 297,359

w/o Path Summarizing Accuracy 74.7 91.9

Token Input 273,447 458,545

PoG-E
w/ Path Summarizing Accuracy 80.4 91.4

Token Input 314,747 273,407

w/o Path Summarizing Accuracy 70.4 90.4

Token Input 419,679 428,545
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B.2 Reasoning Faithfulness Analysis
Overlap ratio between explored paths and ground-truth
paths. We analyzed correctly answered samples from three datasets

to investigate the overlap ratio between the paths 𝑃 explored by

PoG and the ground-truth paths 𝑆 in SPARQL queries. The overlap

ratio is defined as the proportion of overlapping relations to the

total number of relations in the ground-truth SPARQL path:

𝑅𝑎𝑡𝑖𝑜 (𝑃) = |𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑃) ∩ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑆) ||𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑆) | ,

where 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑃) denotes the set of relations in path 𝑃 . Figure 7

illustrates the distribution of questions across different overlap ra-

tios. For the WebQSP dataset, PoG achieves the highest proportion

of fully overlapping paths with the ground truth, reaching approx-

imately 60% accuracy. In contrast, PoG-E applied to the GrailQA

dataset shows the highest proportion of paths with up to 70% non-

overlapping relations, indicating that PoG-E explores novel paths

to derive the answers. The different results between PoG and PoG-E

are due to PoG-E’s strategy of randomly selecting one related edge

from each clustered edge. This approach highlights the effective-

ness of our structure-based path exploration method in generating

diverse and accurate reasoning paths.
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Figure 7: The path overlap ratio of PoG and PoG-E among
CWQ, WebQSP, and GrailQA datasets.

Evidence of answer exploration sources. We conduct an analy-

sis of correctly answered samples from three datasets to investigate

the sources of evidence used by the LLM in generating answers, as

illustrated in Figure 8. Specifically, we categorize all generated an-

swers into three cases: KG only, LLM-inspired KG, and KG-inspired

LLM. In the KG only scenario, answers are generated solely based

on KG paths. The LLM-inspired KG case involves the LLM predict-

ing an answer using its inherent knowledge and subsequently using

the KG to verify its correctness. Conversely, in the KG-inspired LLM
case, the paths generated by the KG are insufficient to reach the

answer, and the LLM supplements the reasoning using its inherent

knowledge. As shown in the figure, up to 14% of answers are gener-

ated through the KG-inspired LLM approach, and up to 9% involve

LLM-inspired KG path supplementation. Compared to previous

work that integrates LLM inherent knowledge with KG data[37],

PoG more effectively leverages the strengths of both sources. These

results demonstrate that PoG is a faithful reasoning method that

primarily relies on KG-based reasoning while being supplemented

by the LLM, ensuring both accuracy and interpretability in answer

generation.
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Figure 8: The proportions of answer evidence of PoG and
PoG-E among CWQ, WebQSP, and GrailQA datasets.
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B.3 Error Analysis
To further analyze the integration of LLMs and KGs, we conduct an

error analysis on the CWQ, WebQSP, and GrailQA datasets. We cat-

egoriz errors into four types: (1) answer generation error, (2) refuse

error, (3) format error, and (4) other hallucination errors. Note that

answer generation error occurs when PoG provides an accurate

reasoning path, but the LLM fails to extract the correct answer from

it. The distribution of these error types is illustrated in Figure 9.

The results indicate that using more powerful LLMs reduces the

number of "other hallucination errors," "refuse errors," and "answer

generation errors," as the model offers enhanced reasoning capa-

bilities based on the retrieved data. Specifically, the reduction in

"answer generation errors" shows the reasoning paths provided by

PoG are effectively utilized by more advanced LLMs. However, we

observe an increase in "format errors" with more powerful LLMs,

which may be attributed to their greater creative flexibility.
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Figure 9: The error instances and categories of PoG and PoG-
E in the CWQ, WebQSP, and GrailQA datasets.

B.4 Efficiency Analysis
LLM calls cost analysis. To evaluate the cost and efficiency of

utilizing LLMs, we conducted an analysis of LLM calls on the CWQ,

WebQSP, and GrailQA datasets. Initially, we examined the propor-

tion of questions answered with varying numbers of LLM calls,

as depicted in Figure 10. The results indicate that the majority of

questions are answered within nine LLM calls across all datasets,

with approximately 80% and 50% of questions being resolved within

six calls on CWQ and WebQSP, respectively. These findings demon-

strate PoG’s efficiency in minimizing LLM usage costs. Furthermore,

we compared the average number of LLM calls required by PoG

with the current SOTA method, ToG [37], as shown in Table 7.

Since we utilized identical datasets for WebQSP, GrailQA, Simple

Questions, and WebQuestions, we report the ToG results from their

paper. The comparison reveals that PoG achieves comparable or

superior accuracy while reducing the number of LLM calls by up

to 40% on the GrailQA dataset compared to ToG. This improve-

ment is attributed to PoG’s dynamic exploration strategy, which

avoids starting from scratch, and its effective use of graph structures

to prune irrelevant information, thereby significantly decreasing

computational costs.
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Figure 10: The proportion of question of PoG and PoG-E
by different LLM Calls among CWQ, WebQSP, and GrailQA
datasets

Table 7: Average LLM calls per question of PoG and ToG
among all datasets.

Method CWQWebQSP GrailQA Simple QuestionsWebQuestions

PoG 10.7 8.3 6.5 6.1 9.3
ToG - 11.2 10.6 8.7 10.5

Running time analysis. To further evaluate the processing ef-

ficiency of PoG, we conducted extensive evaluations focusing on

average accuracy, LLM call frequency, and running time on multi-

hop question datasets GrailQA and CWQ. The results, presented in

Table 8, compare the performance of ToG and PoG across various

beam search strategies. The data indicate that while higher accuracy

slightly increases runtime, PoG effectively balances accuracy with

reduced LLM call costs. Specifically, PoG reduces LLM call costs by

up to 53.5% while increasing accuracy by up to 33.4%. This allows

users to tailor the PoG framework to their specific needs regarding

accuracy, cost, and runtime. All PoG setting provide significantly

lower costs. For instance, on the GrailQA dataset, PoG with 3-step

beam search reduces LLM call costs by 39.6% and improves accuracy

by 33.1%, with only a 1.14% increase in runtime. A similar trend is

also observed in the CWQ dataset.

Table 8: Running time evaluation of ToG and PoG with dif-
ferent beam search methods on CWQ and GrailQA.

Model Evaluation CWQ GrailQA

ToG Accuracy 53.1 59.3

Time (s) 78.7 14.8
LLM Calls 21.3 10.1

PoG Accuracy 81.4 92.7
Time (s) 118.9 21.4

LLM Calls 9.1 6.5

PoG Accuracy 79.8 92.4

w/ 3-Step Beam Search Time (s) 87.5 15.0

LLM Calls 8.8 6.1

PoG Accuracy 57.1 83.0

w/ Fuzzy Selection Time (s) 109.7 15.7

LLM Calls 6.8 4.7
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B.5 Case Study
Case study: graph reduction and path pruning. We conducted

a case study using the example question presented in Figure 2 to il-

lustrate the effects of graph pruning and path pruning on the graph

structure. Figure 11(a) shows the results of graph pruning, where

vertices in blue are selected as part of the question subgraph, and

vertices in black are pruned. In this sample, the number of entities

is reduced from 16,740 to 1,245, resulting in a 92% reduction of

vertices. Figures 11(b) and 11(c) demonstrate the question subgraph

induced by the blue vertices in Figure 11(a) and the results after

applying fuzzy and precise path selection. In these figures, vertices

in blue represent the selected entity after each pruning, vertices in

yellow represent the topic entities, and the vertex in red denotes the

final answer entity. From these graphs, we observe that utilizing the

graph structure allows for the rapid pruning of irrelevant vertices,

ensuring that the reasoning paths remain faithful and highly rele-

vant to the question since all vertices within the question subgraph

are interconnected with all topic entities, thereby maintaining the

integrity and relevance of the reasoning process.

(a) Graph pruning (b) Question subgraph

(c) Fuzzy selection (d) Precise selection

Figure 11: Visualization of graph reduction and Path selec-
tion.

Case study: interpretable reasoning. In this section, we present

Table 9, which illustrates PoG’s interpretability through case studies

involving questions with one, two, and three entities. These exam-

ples demonstrate PoG’s effectiveness in handling multi-entity and

multi-hop tasks by providing clear and understandable reasoning

paths that lead to accurate answers.

C Experiment Details
Experiment datasets. To evaluate PoG’s capability in multi-

hop knowledge-intensive reasoning tasks, we assess it on four

KBQA datasets: three multi-hop datasets (CWQ [38], WebQSP [51],

GrailQA [12]) and one single-hop dataset (SimpleQuestions [31]).

Additionally, to examine PoG on more general tasks, we include

an open-domain QA dataset, WebQuestions. For the evaluation of

large datasets such as CWQ, GrailQA, and SimpleQuestions, we

utilize a random sample of 1,000 test cases from CWQ and employ

the 1,000 samples previously reported by ToG [37] to facilitate a

comparison with the SOTA while also minimizing computational

costs. Freebase serves as the background knowledge graph for all

datasets, which encompasses approximately 88 million entities,

20,000 relations, and 126 million triples [5, 27]. The statistics of the

datasets utilized in this study are detailed in Table 10. The source

code has been publicly available
1
.

Baselines. Inspired by ToG [37], we compare our method with stan-

dard prompting (IO), Chain-of-Thought (CoT), and Self-Consistency

(SC) promptings with six in-context exemplars and "step-by-step"

reasoning chains. For each dataset, we also include previous SOTA

works for comparison. For a fair play, we compare with previous

SOTA among all prompting-based methods and previous SOTA

among all methods respectively. Since ToG is the current SOTA

prompting-based method, we directly refer to their results and

those of other baselines reported in their paper for comparisons.

Experimental implementation. Leveraging the plug-and-play
convenience of our framework, we experiment with two LLMs:

GPT-3.5 and GPT-4. We use the OpenAI API to access GPT-3.5

(GPT-3.5-turbo) and GPT-4. Aligning with ToG, we set the temper-

ature parameter to 0.4 during the exploration process (to increase

diversity) and to 0 during the reasoning process (to ensure repro-

ducibility). The maximum token length for generation is set to 256.

In all experiments, we set both𝑊max and𝐷max to 3 for beam search.

All the experiments are conducted on a machine with Intel Xeon

Gold 6248R CPU, Nvidia A5000 GPU and 512GB memory.

Table 10: Statistics of the datasets used in this paper. † denotes
we randomly select 1,000 samples from the CWQ test set to
create the experiment testing set due to the abundance of test
samples. ∗ denotes that we utilize the 1,000 samples reported
by ToG [37] to compare with the state-of-the-art.

Dataset Answer Format Test Train

ComplexWebQuestions (CWQ)
†

Entity 1,000 27,734

WebQSP Entity/Number 1,639 3,098

GrailQA
∗

Entity/Number 1,000 44,337

Simple Question
∗

Entity/Number 1,000 14,894

WebQuestions Entity/Number 2,032 3,778

1
https://github.com/SteveTANTAN/PoG
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Table 9: Examples of faithful and interpretable reasoning of PoG.

Field Content

Question Lou Seal is the mascot for the team that last won the World Series when?

Answer 2014 World Series

Topic Entity Lou Seal

LLM indicator "Lou Seal" - mascot for - team - last won - World Series - when

Split Question split_question 1: What team is "Lou Seal" the mascot for?

split_question 2: When did the last World Series win occur for the team with Lou Seal as the mascot?

Reasoning Path {Lou Seal}→ sports.mascot.team→ {San Francisco Giants}→ sports.sports_team.championships

→ {2014 World Series, 2012 World Series, 2010 World Series}

PoG answer answer: {2014 World Series}
reason: From the given path {Lou Seal} → sports.mascot.team → {San Francisco Giants}, {San

Francisco Giants} is the team that "Lou Seal" serves as the mascot for. From {San Francisco Giants}→
sports.sports_team.championships→ {2014 World Series, 2012 World Series, 2010 World Series}, the

last World Series won by the {San Francisco Giants} is in {2014}. Therefore, the provided knowledge

graph path is sufficient to answer the overall question, and the answer is {2014 World Series}.

Question What European Union country sharing borders with Germany contains the Lejre Municipality?

Answer Denmark

Topic Entity {Germany, Lejre Municipality}

LLM indicator "Lejre Municipality" – contained by - European Union country (answer)- shares borders with-

"Germany"
Split Question split_question 1: What European Union country shares borders with "Germany"?

split_question 2: What country contains the Lejre Municipality?

Reasoning Path {Lejre Municipality} → location.administrative_division.country → {Denmark} → loca-

tion.location.containedby→ {Eurasia}→ location.location.contains→ {Germany},
{Lejre Municipality} → location.administrative_division.country → {Denmark} →
base.locations.countries. continent → {Europe} → location.location.contains → {Western

Europe}→ location.location.contains→ {Germany}

PoG answer answer: {Denmark}
reason: From {Denmark}→ location.location.containedby→ {Eurasia}→location.location.contains

→ {Germany}, Denmark is European Union country shares borders with "Germany". From {Lejre

Municipality} → location.administrative_division.country → {Denmark}, Denmark is a country

contains the Lejre Municipality Both paths lead to Denmark, which is the European Union country

sharing borders with Germany and containing the Lejre Municipality. Therefore, the provided

knowledge graph path is sufficient to answer the main question, and the answer is {Denmark}.

Question What Central Tiem Zone continent do the Falkland Islands belong to?

Answer Americas

Topic Entity {Falkland Islands, Continent, Central Time Zone}

LLM indicator answer("Central Time Zone") – owns - answer("Continent")- located contain -"Falkland Islands"
Split Question split_question 1:What continent do the Falkland Islands belong to?

split_question 2: What Central Time Zone does the continent belong to?

Reasoning Path {Central Time Zone} → time.time_zone.locations_in_this_time_zone → {Americas} → com-

mon.topic.not able_types→ {Continent}→ common.topic. notable_types→ {Americas}→ loca-

tion.location.con tains→{ Falkland Islands}

PoG answer answer: {Americas}
reason: From {Continent}→ common.topic.notable_types→ {Americas}→ location.location. con-

tains→{ Falkland Islands}, Americas is the continent Falkland Islands belong to. From {Central

Time Zone}→ time.time_zone.locations_in_this_time_zone→ {Americas}→ common.topic. no-

table_types→ {Continent}. Americas is the Central Time Zone. Therefore, the provided knowledge

graph path is sufficient to answer the overall question, and the answer is {Americas}.
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D SPARQL
This section outlines the pre-defined SPARQL queries used for

interacting with the knowledge graph and constructing graphs for

our experiments.

D.1 1-hop Entity and Relation Search
To facilitate the retrieval of 1-hop neighbors of entities within the

Freebase Knowledge Graph, we have predefined a SPARQL query.

This query is designed to be executed by simply substituting the

appropriate ID for the query entity ID. It returns the connected

entities’ IDs and their associated relations’ IDs, indicating whether

the connected entity is at the tail or the head of the relation.

PREFIX ns: <http ://rdf.freebase.com/ns/>

SELECT ?relation ?connectedEntity ?direction

WHERE {

{

ns:ID ?relation ?connectedEntity .

BIND("tail" AS ?direction)

}

UNION

{

?connectedEntity ?relation ns:ID .

BIND("head" AS ?direction)

}

}

D.2 Short Textual Description
The following predefined function implements the retrieval of short

textual descriptions, D(.), for converting the identifiers (IDs) of

entities or relations into natural language descriptions.

PREFIX ns: <http ://rdf.freebase.com/ns/>

SELECT DISTINCT ?tailEntity

WHERE {

{

?entity ns:type.object.name ?tailEntity .

FILTER (?entity = ns:ID)

}

UNION

{

?entity <http ://www.w3.org /2002/07/

owlsameAs > ?tailEntity .

FILTER (?entity = ns:ID)

}

}

D.3 1-hop Subgraph Search
To facilitate subgraph detection in Section 4.1, we implement the

1-hop subgraph detection feature by integrating SPARQL functions

described in Appendix D.1 and D.2. The purpose of this function

is to retrieve, in a single SPARQL query, the 1-hop neighbors of a

given query with their IDs, natural language names, and connected

relationships, specifying whether the connected entity is at the tail

or the head of the relationship.

PREFIX ns: <http ://rdf.freebase.com/ns/>

SELECT ?relation ?connectedEntity ?connectedEntityName ?

direction

WHERE {

{

ns:ID ?relation ?connectedEntity .

OPTIONAL {

?connectedEntity ns:type.object.name ?

name .

FILTER(lang(?name) = 'en ')

}

BIND(COALESCE (?name , "Unnamed
Entity") AS ?connectedEntityName)

BIND("tail" AS ?direction)

}

UNION

{

?connectedEntity ?relation ns:ID .

OPTIONAL {

?connectedEntity ns:type.object.name ?

name .

FILTER(lang(?name) = 'en ')

}

BIND(COALESCE (?name , "Unnamed
Entity") AS ?connectedEntityName)

BIND("head" AS ?direction)

}

}
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E Prompts
In this section, we detail the prompts required for our main experimental procedures.

Question Analysis Prompt Template

You will receive a multi-hop question, which is composed of several interconnected queries, along

with a list of topic entities that serve as the main keywords for the question. Your task is to break the

question into simpler parts, using each topic entity once and provide a Chain of Thought (CoT) that

shows how the topic entities are related. Note: Each simpler question should explore how one topic

entity connects to others or the answer. The goal is to systematically address each entity to derive

the final answer.

In-Context Few-shot

Q: {Query}

Topic Entity: {Topic Entity}

A:

LLM Supplement Prompt Template

Using the main question, a possibly uncertain chain of thought generated by a language model,

some related split questions, paths from the "Related_paths" section, and main topic entities: please

first provide three predicted results, and second offer three possible chains of thought that could lead

to these results, using the provided knowledge paths and your own knowledge. If any answers are

unclear, suggest alternative answers to fill in the gaps in the chains of thought, following the same

format as the provided examples.

In-Context Few-shot

Q: {Query}

Topic Entity: {Topic Entity}

Think Indicator:{Think Indicator}

Split Question:{Split Question}

A:

where {Think Indicator}, and {Split Question} are obtained in section 4.1. An indicator example is shown in Figure 2.

Precise Path Select Prompt Template

Given a main question, a LLM-generated thinking Cot that considers all the entities, a few split

questions that you can use one by one and finally obtain the final answer, and the associated retrieved

knowledge graph path, {set of entities (with id start with "m.")} -> {set of relationships} -> {set of

entities(with id start with "m.")}, Please score and give me the top three lists from the candidate paths

set can be highly to be the answer of the question.

In-Context Few-shot

Q: {Query}

Think Indicator:{Think Indicator}

Split Question:{Split Question}

Candidate Paths:{Candidate Paths}

A:

{Candidate Paths} denotes the retrieved reasoning paths 𝐹𝑖𝑛𝑎𝑙𝑝𝑎𝑡ℎ𝑠 to be selected in this request which are formatted as a series of

structural sentences:

{𝑒0𝑥 , ..., 𝑒0𝑧 } → 𝑟1𝑖 → {𝑒1𝑥 , ..., 𝑒1𝑧 } → . . . → 𝑟𝑙 𝑗 → {𝑒𝑙𝑥 , ..., 𝑒𝑙𝑧 }
. . .

{𝑒0𝑥 , ..., 𝑒0𝑧 } → 𝑟1𝑖 → {𝑒1𝑥 , ..., 𝑒1𝑧 } → . . . → 𝑟𝑙 𝑗 → {𝑒𝑙𝑥 , ..., 𝑒𝑙𝑧 },
where, 𝑖 and 𝑗 in 𝑟1𝑖 , 𝑟1𝑖 represent the 𝑖-th, 𝑗-th relation from each relation edge in the clustered question subgraph. And 𝑒 is constructed by

its ID and natural language name D(𝐼𝐷).
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Path Summarizing Prompt Template

Given a main question, an uncertain LLM-generated thinking Cot that considers all the entities, a

few split questions that you can use one by one and finally obtain the final answer, the associated

accuracy retrieved knowledge paths from the Related paths section, and main topic entities. Your

task is to summarize the provided knowledge triple in the Related paths section and generate a chain

of thoughts by the knowledge triple related to the main topic entities of the question, which will

used for generating the answer for the main question and split question further. You have to make

sure you summarize correctly by using the provided knowledge triple, you can only use the entity

with id from the given path and you can not skip in steps.

In-Context Few-shot

Q: {Query}

Think Indicator:{Think Indicator}

Split Question:{Split Question}

Related Paths:{Related Paths}

A:

{Related_Paths} has the same format with the {Candidate_Paths} before.

Question Answering Evaluation Prompt Template

Given a main question, an uncertain LLM-generated thinking Cot that considers all the entities, a

few split questions that you can use and finally obtain the final answer, and the associated retrieved

knowledge graph path, {set of entities (with id start with "m.")} -> {set of relationships} -> {set of

entities(with id start with "m.")}. Your task is to determine if this knowledge graph path is sufficient to

answer the given split question first then the main question. If it’s sufficient, you need to respond {Yes}

and provide the answer to the main question. If the answer is obtained from the given knowledge

path, it should be the entity name from the path. Otherwise, you need to response {No}, then explain

the reason.

In-Context Few-shot

Q: {Query}

Think Indicator:{Think Indicator}

Split Question:{Split Question}

Related Paths:{Related Paths}

A:

Question Answering Generation Prompt Template

Given a main question, an uncertain LLM-generated thinking Cot that considers all the entities, a few

split questions that you can use one by one and finally obtain the final answer, and the associated

retrieved knowledge graph path, {set of entities (with id start with "m.")} -> {set of relationships}

-> {set of entities(with id start with "m.")}, Your task is to generate the answer based on the given

knowledge graph path and your own knowledge.

In-Context Few-shot

Q: {Query}

Think Indicator:{Think Indicator}

Split Question:{Split Question}

Related Paths:{Related Paths}

A:
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