2410.14211v4 [cs.CL] 12 Mar 2025

arxXiv

Paths-over-Graph: Knowledge Graph Empowered Large
Language Model Reasoning

Xingyu Tan
University of New South Wales
Data61, CSIRO
Sydney, Australia
xingyu.tan@unsw.edu.au

Xiwei Xu
Data61, CSIRO
Sydney, Australia
xiwei.xu@data61.csiro.au

Abstract

Large Language Models (LLMs) have achieved impressive results
in various tasks but struggle with hallucination problems and lack
of relevant knowledge, especially in deep complex reasoning and
knowledge-intensive tasks. Knowledge Graphs (KGs), which cap-
ture vast amounts of facts in a structured format, offer a reliable
source of knowledge for reasoning. However, existing KG-based
LLM reasoning methods face challenges like handling multi-hop
reasoning, multi-entity questions, and effectively utilizing graph
structures. To address these issues, we propose Paths-over-Graph
(PoG), a novel method that enhances LLM reasoning by integrating
knowledge reasoning paths from KGs, improving the interpretabil-
ity and faithfulness of LLM outputs. PoG tackles multi-hop and
multi-entity questions through a three-phase dynamic multi-hop
path exploration, which combines the inherent knowledge of LLMs
with factual knowledge from KGs. In order to improve the efficiency,
PoG prunes irrelevant information from the graph exploration first
and introduces efficient three-step pruning techniques that incor-
porate graph structures, LLM prompting, and a pre-trained lan-
guage model (e.g., SBERT) to effectively narrow down the explored
candidate paths. This ensures all reasoning paths contain highly
relevant information captured from KGs, making the reasoning
faithful and interpretable in problem-solving. PoG innovatively
utilizes graph structure to prune the irrelevant noise and represents
the first method to implement multi-entity deep path detection on
KGs for LLM reasoning tasks. Comprehensive experiments on five
benchmark KGQA datasets demonstrate PoG outperforms the state-
of-the-art method ToG across GPT-3.5-Turbo and GPT-4, achieving
an average accuracy improvement of 18.9%. Notably, PoG with
GPT-3.5-Turbo surpasses ToG with GPT-4 by up to 23.9%.

“Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW °25, Sydney, NSW, Australia

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1274-6/25/04

https://doi.org/10.1145/3696410.3714892

Xiaoyang Wang"
University of New South Wales
Sydney, Australia
xiaoyang.wangl@unsw.edu.au

Xin Yuan
Data61, CSIRO
Sydney, Australia
xin.yuan@data61.csiro.au

Qing Liu
Data61, CSIRO
Sydney, Australia
q.liu@dataé1.csiro.au

Wenjie Zhang
University of New South Wales
Sydney, Australia
wenjie.zhang@unsw.edu.au

CCS Concepts

« Information systems — Question answering.

Keywords

Large Language Models; Knowledge Graph; Knowledge Graph
Question Answering; Retrieval-Augmented Generation

ACM Reference Format:

Xingyu Tan, Xiaoyang Wang, Qing Liu, Xiwei Xu, Xin Yuan, and Wenjie
Zhang. 2025. Paths-over-Graph: Knowledge Graph Empowered Large Lan-
guage Model Reasoning. In Proceedings of the ACM Web Conference 2025
(WWW °25), April 28-May 2, 2025, Sydney, NSW, Australia. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3696410.3714892

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable
performance in various tasks [4, 6, 8, 16, 41]. These models lever-
age pre-training techniques by scaling to billions of parameters
and training on extensive, diverse, and unlabelled data [33, 41].
Despite these impressive capabilities, LLMs face two well-known
challenges. First, they struggle with deep and responsible reasoning
when tackling complex tasks [19, 32, 39]. Second, the substantial
cost of training makes it difficult to keep models updated with
the latest knowledge [37, 46], leading to errors when answering
questions that require specialized information not included in their
training data. For example, in Figure 1(a), though models like GPT
can generate reasonable answers for knowledge-specific questions,
these answers may be incorrect due to outdated information or
hallucination of reasoning on LLM inherent Knowledge Base (KB).

To deal with the problems of error reasoning and knowledge
gaps, the plan-retrieval-answering method has been proposed
[25, 27, 54]. In this approach, LLMs are prompted to decompose
complex reasoning tasks into a series of sub-tasks, forming a plan.
Simultaneously, external KBs are retrieved to answer each step of
the plan. However, this method still has the issue of heavily relying
on the reasoning abilities of LLMs rather than the faithfulness
of the retrieved knowledge. The generated reasoning steps guide
information selection, but answers are chosen based on the LLM’s
interpretation of the retrieved knowledge rather than on whether
the selection leads to a correct and faithful answer.

https://orcid.org/0009-0000-7232-7051
https://orcid.org/0000-0003-3554-3219
https://orcid.org/0000-0001-7895-9551
https://orcid.org/0000-0002-2273-1862
https://orcid.org/0000-0002-9167-1613
https://orcid.org/0000-0001-6572-2600
https://doi.org/10.1145/3696410.3714892
https://doi.org/10.1145/3696410.3714892

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

|| Question: What country bordering France contains an airport that serves Mjmiqg?]i

GPT-35/6PT-4 = - :
LLM only Q Belgium :

i (Chain of Thoughts prompt): Let's go step by step. :
1 Response: Nijmegen is served by airports in the neighboring countries, and one of the closest |
i major ones is Brussels Airport (BRU) in Belgium, which is relatively near Nijmegen compared to i
E other major airports. The answer is Belgium. !

(@)

- 5 '
K6 :
% + @ Triples Netherlands ® ‘

E (ToG): Exlporated triples: [France, location.location.containedby, Europe], [France, location.loca- ‘
1| tion.containedby, Western Europe], [France, location.location.geolocation, Unnamed Entity],[Nij- |
E megen, second_level_division, Netherland] w
1| Answering: First, Nijmegen is a city in the Netherlands. Second, the Netherlands is a country |
1 | bordering France. The answer is {Netherlands} H

LLM empowered KG . @ Refuse to ‘
1| subgraph answering @ % & answering

: (MindMap): MindMap cannot prompt LLM to construct a graph and generate the graph descript :
1| document since the retrieved subgraph is extremely large and dense. :

1| LLM empowered K6
1| exploration search

Subgraph Detection

E@;{é@ﬁ@ § 6 1= ©

+ u —> Germany | :

a—e— @ "—

Question Analysis

Reasoning Path Reasoning Path @ :
| Exploration Pruning H
E /(Poé) Reasoning paths: :
! | Nijmegen "™, Weeze Airport <", Germany "™, Europ, Western Europen " France|
H nearyby . contain by adjoins. .. adjoins H
i | Nijmegen ~~ s Weeze Airport ———— Germany > Unnamed Entity — France :
1| Response: From the provided knowledge graph path, the entity {Germany} is the country that|:
1| contains an airport serving Nijmegen and is also the country bordering France. Therefore, the |
E answer to the main question "What country bordering France contains an airport that serves ‘
H \l\\lijmegen?" is {Germany}. i

Figure 1: Representative workflow of four LLM reasoning
paradigms.

To address these challenges, incorporating external knowledge

sources like Knowledge Graphs (KGs) is a promising solution to
enhance LLM reasoning [26, 27, 29, 37]. KGs offer abundant factual
knowledge in a structured format, serving as a reliable source to
improve LLM capabilities. Knowledge Graph Question Answering
(KGQA) serves as an approach for evaluating the integration of KGs
with LLMs, which requires machines to answer natural language
questions by retrieving relevant facts from KGs. These approaches
typically involve: (1) identifying the initial entities from the ques-
tion, and (2) iteratively retrieving and refining inference paths until
sufficient evidence has been obtained. Despite their success, they
still face challenges such as handling multi-hop reasoning problems,
addressing questions with multiple topic entities, and effectively
utilizing the structural information of graphs.
Challenge 1: Multi-hop reasoning problem. Current methods [15,
28, 37, 50], such as the ToG model presented in Figure 1(b), begin
by exploring from each topic entity, with LLMs selecting connected
knowledge triples like (France, contained_by, Europe). This
process relies on the LLM’s inherent understanding of these triples.
However, focusing on one-hop neighbors can result in plausible but
incorrect answers and prematurely exclude correct ones, especially
when multi-hop reasoning is required. Additionally, multi-hop rea-
soning introduces significant computational overhead, making effi-
cient pruning essential, especially in dense and large KGs.

Challenge 2: Multi-entity question. As shown in Figure 1(b), exist-

ing work [15, 28, 37, 50] typically explores KG for each topic entity
independently. When a question involves multiple entities, these

Xingyu Tan et al.

entities are examined in separate steps without considering their
interconnections. This approach can result in a large amount of
irrelevant information in the candidate set that does not connect to
the other entities in the question, leading to suboptimal results.
Challenge 3: Utilizing graph structure. Existing methods [7, 13, 46]
often overlook the inherent graph structures when processing re-
trieved subgraphs. For example, the MindMap model in Figure 1(c)
utilizes LLMs to generate text-formatted subgraphs from KG triples,
converting them into graph descriptions that are fed back into the
LLM to produce answers. This textual approach overlooks the in-
herent structural information of graphs and can overwhelm the
LLM when dealing with large graphs. Additionally, during KG infor-
mation selection, most methods use in-context learning by feeding
triples into the LLM, ignoring the overall graph structure.

Contributions. In this paper, we introduce a novel method, Paths-
over-Graph (PoG). Unlike previous studies that utilize knowledge
triples for retrieval [28, 37], PoG employs knowledge reasoning
paths, that contain all the topic entities in a long reasoning length,
as a retrieval-augmented input for LLMs. The paths in KGs serve
as logical reasoning chains, providing KG-supported, interpretable
reasoning logic that addresses issues related to the lack of specific
knowledge background and unfaithful reasoning paths.

To address multi-hop reasoning problem, as shown in Figure 1(d),

PoG first performs question analysis, to extract topic entities from
questions. Utilizing these topic entities, it decomposes the com-
plex question into sub-questions and generates an LLM thinking
indicator termed "Planning". This planning not only serves as
an answering strategy but also predicts the implied relationship
depths between the answer and each topic entity. The multi-hop
paths are then explored starting from a predicted depth, enabling
a dynamic search process. Previous approaches using planning
usually retrieve information from scratch, which often confuses
LLMs with source neighborhood-based semantic information. In
contrast, our method ensures that LLMs follow accurate reasoning
paths that directly lead to the answer.

To address multi-entity questions, PoG employs a three-phase ex-

ploration process to traverse reasoning paths from the retrieved
question subgraph. All paths must contain all topic entities in the
same order as they occur in the LLM thinking indicator. In terms of
reasoning paths in KGs, all paths are inherently logical and faithful.
Each path potentially contains one possible answer and serves as
the interpretable reasoning logic. The exploration leverages the
inherent knowledge of both LLM and KG.

To effectively utilize graph structure, PoG captures the question
subgraph by expanding topic entities to their maximal depth neigh-
bors, applying graph clustering and reduction to reduce graph
search costs. In the path pruning phase, we select possible correct
answers from numerous candidates. All explored paths undergo a
three-step beam search pruning, integrating graph structures, LLM
prompting, and a pre-trained language understanding model (e.g.,
BERT) to ensure effectiveness and efficiency. Additionally, inspired
by the Graph of Thought (GoT) [4], to reduce LLM hallucination,
PoG prompts LLMs to summarize the obtained Top-Wnax paths
before evaluating the answer, where Wy is a user-defined maxi-
mum width in the path pruning phase. In summary, the advantage
of PoG can be abbreviated as:

Paths-over-Graph: Knowledge Graph Empowered Large Language Model Reasoning

e Dynamic deep search: Guided by LLMs, PoG dynamically ex-
tracts multi-hop reasoning paths from KGs, enhancing LLM ca-
pabilities in complex knowledge-intensive tasks.
Interpretable and faithful reasoning: By utilizing highly
question-relevant knowledge paths, PoG improves the inter-
pretability of LLM reasoning, enhancing the faithfulness and
question-relatedness of LLM-generated content.

Efficient pruning with graph structure integration: PoG

incorporates efficient pruning techniques in both the KG and

reasoning paths to reduce computational costs, mitigate LLM

hallucinations caused by irrelevant noise, and effectively narrow

down candidate answers.

o Flexibility and effectiveness: a) PoG is a plug-and-play frame-
work that can be seamlessly applied to various LLMs and KGs. b)
PoG allows frequent knowledge updates via the KG, avoiding the
expensive and slow updates required for LLMs. c¢) PoG reduces
the LLMs token usage by over 50% with only a +2% difference
in accuracy compared to the best-performing strategy. d) PoG
achieves state-of-the-art results on all the tested KGQA datasets,
outperforming the strong baseline ToG by an average of 18.9% ac-
curacy using both GPT-3.5 and GPT-4. Notably, PoG with GPT-3.5
can outperform ToG with GPT-4 by up to 23.9%.

2 Related Work

KG-based LLM reasoning. KGs provide structured knowledge
valuable for integration with LLMs [29]. Early studies [25, 27, 30, 52]
embed KG knowledge into neural networks during pre-training or
fine-tuning, but this can reduce explainability and hinder efficient
knowledge updating [29]. Recent methods combine KGs with LLMs
by converting relevant knowledge into textual prompts, often ig-
noring structural information [29, 46]. Advanced works [17, 28, 37]
involve LLMs directly exploring KGs, starting from an initial entity
and iteratively retrieving and refining reasoning paths until the
LLM decides the augmented knowledge is sufficient. However, by
starting from a single vertex and ignoring the question’s position
within the KG’s structure, these methods overlook multiple topic
entities and the explainability provided by multi-entity paths.

Reasoning with LLM prompting. LLMs have shown significant
potential in solving complex tasks through effective prompting
strategies. Chain of Thought (CoT) prompting [45] enhances rea-
soning by following logical steps in few-shot learning. Extensions
like Auto-CoT [53], Complex-CoT [10], CoT-SC [44], Zero-Shot
CoT [21], ToT [48], and GoT [4] build upon this approach. However,
these methods often rely solely on knowledge present in training
data, limiting their ability to handle knowledge-intensive or deep
reasoning tasks. To solve this, some studies integrate external KBs
using plan-and-retrieval methods such as CoK [25], RoG [27], and
ReAct [49], decomposing complex questions into subtasks to re-
duce hallucinations. However, they may focus on the initial steps of
sub-problems and overlook further steps of final answers, leading
to locally optimal solutions instead of globally optimal ones. To
address these deep reasoning challenges, we introduce dynamic
multi-hop question reasoning. By adaptively determining reason-
ing depths for different questions, we enable the model to handle
varying complexities effectively.

KG information pruning. Graphs are widely used to model com-
plex relationships among different entities [22, 23, 35, 40]. KGs

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

contain vast amounts of facts [14, 42, 47], making it impractical
to involve all relevant triples in the context of the LLM due to
high costs and potential noise [43]. Existing methods [17, 28, 37]
typically identify initial entities and iteratively retrieve reasoning
paths until an answer is reached, often treating the LLM as a func-
tion executor and relying on in-context learning or fine-tuning,
which is expensive. Some works attempt to reduce pruning costs.
KAPING [2] projects questions and triples into the same seman-
tic space to retrieve relevant knowledge via similarity measures.
KG-GPT [20] decomposes complex questions, matches, and selects
the relevant relations with sub-questions to form evidence triples.
However, these methods often overlook the overall graph structure
and the interrelations among multiple topic entities, leading to
suboptimal pruning and reasoning performance.

3 Preliminary

Consider a Knowledge Graph (KG) G(&E,R, 7), where &, R and 7~
represent the set of entities, relations, and knowledge triples, respec-
tively. Each knowledge triple T € 7~ encapsulates the factual knowl-
edge in G, and is represented as T = (ep, 1, e;), where ep, ey € &
and r € R. Given an entity set &g C &, the induced subgraph of
Es is denoted as S = (85, Rs, Ts), where 75 = {(e,r,¢’) € T |
e,e’ € Es},and Rs = {r € R | (e,r,e’) € T5}. Furthermore, we
denote D(e) and D(r) as the sets of short textual descriptions for
each entity e € & and each relation r € R, respectively. For exam-
ple, the text description of the entity “m.0f819¢” is D(“m.0£819¢”)=
“France”. For simplicity, in this paper, all entities and relations are
referenced through their D representations and transformed into
natural language.

DEFINITION 1 (REASONING PATH). Given a KG G, a reasoning path
within G is defined as a connected sequence of knowledge triples, repre-
sented as:pathg (e1,e141) = {T, T2, ... Ty} = {(e1, 11, €2), (2,72, €3)
s (e, 11 101)} , where T; € T denotes the i-th triple in the path
and [denotes the length of the path, i.e., length(pathg(e1, e141)) = L.

ExampLE 1. Consider a reasoning path between "University" and
"Student” in KG: pathg(University, Student) = {(University,

employs, Professor), (Professor, teaches, Course), (Course,
enrolled_in, Student)}, and can be visualized as:
employs teaches enrolled_in
University ——— Professor ——— Course ————— Student.

It indicates that a “University" employs a “Professor," who teaches a
“Course," in which a "Student” is enrolled. The length of the path is 3.

For any entity s and ¢ in G, if there exists a reasoning path
between s and t, we say s and ¢ can reach each other, denoted as
s <> t. The distance between s and ¢t in G, denoted as distg (s, 1),
is the shortest reasoning path distance between s and ¢. For the
non-reachable vertices, their distance is infinite. Given a positive
integer h, the h-hop neighbors of an entity s in G is defined as
Ng(s,h) = {t € E|distg(s,t) < h}.

DEFINITION 2 (ENTITY PATH). Given a KG G and a list of entities
liste = [e1, e, €3, ..., ep], the entity path of liste is defined as a con-
nected sequence of reasoning paths, which is denoted as pathg (list,)
= {pathg (er,2). pathg (ez,es)...... pathg (ep_1.e)} = {(es.r.e0)
|(es, 7, er) € pathg(eieir1) N1 < i <I}

WWW °25, April 28-May 2, 2025, Sydney, NSW, Australia

Airport

. . . s containedby
location.administrative_division, ~

containedby Germany

continent

Veghel, Strijen,
Rhenen, Oostzaan

Precise Path Selection

Fuzzy Selection

'
'

'

i

i Indicator —@-} O—O@
i

© | Paths_set

'

'

'

Lyon-Saint
Exupéry

adjoin lUnnamedEntiti .
C}l’lTCIl n

Xingyu Tan et al.

Exploration

Question:
What country bordering
France contains an airport
that serves Nijmegen?

Topic Entity Path
Exploration

LLM Supplement Path
Exploration

¢/

Node Expand Exploration

participating
countries

Topic Entity
Recognition

Question
Subgraph
Detection

in_this
time_zone

Split Questions, J
LLM indicator,
Ordered Entities

By I -

g |- ()

. — Answer
Summarizing

Question Answering

Figure 2: Overview of the PoG architecture. Exploration: After initialization (detailed in Figure 3), the model retrieves entity
paths from G, through three exploration phases. Path Pruning: PoG applies a three-step beam search to prune paths after each
exploration phase. Question Answering: The pruned paths are then evaluated for question answering,. If these paths do not
fully answer the question, the model explores deeper paths until Dy, is reached or moves on to the next exploration phase.

Knowledge Graph Question Answering (KGQA) is a fundamental
reasoning task based on KGs. Given a natural language question
q and a KG G, the objective is to devise a function f that predicts
answers a € Answer(q) utilizing knowledge encapsulated in G,
ie., a = f(q, G). Consistent with previous research [27, 28, 36, 37],
we assume the topic entities Topic(g) mentioned in g and answer
entities Answer(q) in ground truth are linked to the corresponding
entities in G, i.e., Topic(g) € & and Answer(q) C &.

4 Method

PoG implements the “KG-based LLM Reasoning" by first exploring
all possible faithful reasoning paths and then collaborating with
LLM to perform a 3-step beam search selection on the retrieved
paths. Compared to previous approaches [28, 37], our model fo-
cuses on providing more accurate and question-relevant retrieval-
argument graph information. The framework of PoG is outlined in
Figure 2, comprising four main components.

o Initialization. The process begins by identifying the set of topic
entities from the question input, and then queries the source KG
G by exploring up to Dmax-hop from each topic entity to con-
struct the evidence sub-graph G4, where Dpax is the user-defined
maximum exploration depth. Subsequently, we prompt the LLM
to analyze the question and generate an indicator that serves as
a strategy for the answer formulation process and predicting the
exploration depth Dpredict-

o Exploration. After initialization, the model retrieves topic entity
paths from G, through three exploration phases: topic entity path
exploration, LLM supplement path exploration, and node expand

exploration. All reasoning paths are constrained within the depth
range D € [Dpredicb Dimax].-

e Path Pruning. Following each exploration phase, PoG employs
a pre-trained LM, LLM prompting, and graph structural analysis
to perform a three-step beam search. The pruned paths are then
evaluated in the question answering.

e Question Answering. Finally, LLM is prompted to assess if the
pruned reasoning paths sufficiently answer the question. If not,
continue exploration with deeper paths incrementally until the
Dmax is exceeded or proceed to the next exploration phase.

4.1 Initialization

The initialization has two main stages, i.e., question subgraph de-
tection and question analysis. The framework is shown in Figure 3.
Question subgraph detection. Given a question g, PoG initially
identifies the question subgraph, which includes all the topic entities
of q and their Dyax-hop neighbors.

Topic entity recognition. To identify the relevant subgraph, PoG

first employs LLMs to extract the potential topic entities from the
question. Following the identification, the process applies BERT-
based similarity matching to align these potential entities with
entities from KG. Specifically, as shown in Figure 3, we encode both
the keywords and all entities from KG into dense vector embeddings
as Hy and Hg. We then compute a cosine similarity matrix between
these embeddings to determine the matches. For each keyword, the
entities with the highest similarity scores are selected to form the
set Topic(q). This set serves as the foundation for constructing the
question subgraph in subsequent steps.

Paths-over-Graph: Knowledge Graph Empowered Large Language Model Reasoning

Country
France @

Airport E

Nijmegen

Question:
What country bordering _@
France contains an airport
that serves Nijmegen?

LLM Indictor:

borders

. .. serves own
: OUTEUﬂ : | Nijmegen «—— airport +— answer (country) —— France
LLM > 9spllit

Split_questionl: What country contains an airport that serves Nijmegen?

Split_question2: What country borders France?

Question Analysis

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

S S

| Topic Entity: !
1

1 France 1

1

i)

Knowledge
6Graph(9) &

’ 6Graph Reduction A ’ NOdec I'-'lnf Relation . !
i 1
: : ! ustering : : |
1 1 1 1 1 |
! ! ! 1 1 1
Output2: ! 1 1 A | !
gq] | : 1 1 :
© L b] e .
1 1 1
1 . : ! . : I| O 1
* 4 N ’ N ’

Figure 3: Overview of the initialization phase. Output 1: from the input question, the model identifies topic entities and prompts
the LLM to decompose questions into split questions g;,;;; and generate an indicator I; 1 . The indicator outlines a strategy for
formulating the answer and predicts the exploration depth Dy, 4;c;. Output 2: the model queries the source KG up to D;;4x-hop
from identified topic entities, constructing and pruning the evidence subgraph G,.

Subgraph detection. Upon identifying the topic entities, PoG cap-

tures the induced subgraph G; C G by expanding around each
entity e in Topic(q). For each entity, we retrieve knowledge triples
associated with its Dpax-hop neighbors, thereby incorporating
query-relevant and faithful KG information into G4. Through this
process, we update &g with newly added intermediate nodes that
serve as bridging pathways between the topic entities. The result
subgraph, Gq is defined as (Sq, Rq,%), where &q encompasses
Topic(q) together with the set {Ng (e, Dmax) | e € Topic(q)}, ef-
fectively linking all relevant entities and their connective paths
within the defined hop distance. To interact with KG, we utilize the
pre-defined SPARQL queries as detailed in Appendix D.

Graph pruning. To efficiently manage information overhead and
reduce computational cost, we implement graph pruning on the
question subgraph G4 using node and relation clustering along-
side graph reduction techniques. As illustrated in Figure 3, node
and relation clustering is achieved by compressing multiple nodes
and their relations into supernodes, which aggregate information
from the original entities and connections. For graph reduction, we
employ bidirectional BFS to identify all paths connecting the topic
entities. Based on these paths, we regenerate induced subgraphs
that involve only the relevant connections, effectively excluding
nodes and relations that lack strong relevance to the topic entities.
Question analysis. To reduce hallucinations in LLMs, the question
analysis phase is divided into two parts and executed within a single
LLM call using an example-based prompt (shown in Appendix E).
First, the complex question g is decomposed into simpler questions
based on the identified topic entities, each addressing their relation-
ship to the potential answer. Addressing these simpler questions
collectively guides the LLM to better answer the original query,
thereby reducing hallucinations. Second, a LLM indicator is gen-
erated, encapsulating all topic entities and predicting the answer
position within a single chain of thought derived from the original
question. This indicator highlights the relationships and sequence

among the entities and answer. Based on this, a predicted depth
Dpredict is calculated, defined as the maximum distance between
the predicted answer and each topic entity. An example of question
analysis is shown in Figure 3 with predicted depth 2.

4.2 Exploration

As discussed in Section 1, identifying reasoning paths that encom-
pass all topic entities is essential to derive accurate answers. These
paths serve as interpretable chains of thought, providing both the
answer and the inference steps leading to it, a feature we refer as in-
terpretability. To optimize the discovery of such paths efficiently
and accurately, the exploration process is divided into three phases:
topic entity path exploration, LLM supplement path exploration,
and node expand exploration. After each phase, we perform path
pruning and question answering. If a sufficient path is found, the
process terminates; otherwise, it advances to the next phase to ex-
plore additional paths. Due to the space limitation, the pseudo-code
of exploration section is shown in Appendix A.1.

Topic entity path exploration. To reduce LLM usage and search
space, PoG begins exploration from a predicted depth Dpyedict rather
than the maximum depth. Using the question subgraph G, topic
entities Topic(g), LLM indicator I pm, and Dpregict, PoG identifies
reasoning paths containing all topic entities by iteratively adjusting
the exploration depth D. Entities in Topic(q) are ordered according
to Iy to facilitate reasoning effectively. Starting from the pre-
dicted depth D = min(Dpredicts Dmax), We employ a bidirectional
BFS to derive all potential entity paths, which is defined as:

Paths; ={p | |Topic(q)| X (D — 1) <length(p) <|Topic(q)| X D},

where p = Pathgq (Topic(q)). To reduce the complexity, a prun-
ing strategy is employed and selects the top-Wpax paths based
on Paths;, I1 M, and split questions from Section 4.1. These paths
are evaluated for sufficiency verification. If inadequate, D is incre-
mented until D,k is reached. Then the next phase commences.

WWW °25, April 28-May 2, 2025, Sydney, NSW, Australia

LLM supplement path exploration. Traditional KG-based LLM
reasoning often rephrases KG facts without utilizing the LLM’s
inherent knowledge. To overcome this, PoG prompts LLMs to
generate predictions based on path understanding and its im-
plicit knowledge, providing additional relevant insights. It involves
generating new LLM thinking indicators Isyp for predicted en-
tities e € Predict(q), and then using text similarity to verify
and align them with &; € Gg. The supplementary entity list
Lists(e) = Topic(q) + e is built and ranked by Isyp, to facilitate
reasoning effectively. Next, supplementary paths Pathss are de-
rived from Listg(e) in the evidence KG G4 with a fixed depth Dpax:

Pathsg = {p | length(p) < |Topic(g)| X Dmax}»

where p = Pathgq (Listg(e)). These paths with new indicators are
evaluated similarly to the topic entity path exploration phase. The
prompting temple is shown in Appendix E.

Node expand exploration. If previous phases cannot yield suf-
ficient paths, PoG proceeds to node expansion. Unlike previous
methods [28, 37] that separately explore relations and entities, PoG
explores both simultaneously, leveraging clearer semantic infor-
mation for easier integration with existing paths. During the ex-
ploration, PoG expands unvisited entities by 1-hop neighbors in G.
New triples are merged into existing paths to form the new paths,
followed by pruning and evaluation.

4.3 Path Pruning

As introduced in Section 2, KGs contain vast amounts of facts,
making it impractical to involve all relevant triples in the LLM’s
context due to high costs. To address this complexity and reduce
LLM overhead, we utilize a three-step beam search for path pruning.
The corresponding pseudo-code can be found in Appendix A.2.
Fuzzy selection. Considering that only a small subset of the gen-
erated paths is relevant, the initial step of our beam search involves
fuzzy selection by integrating a pre-trained language model (e.g.
SentenceBERT [34]), to filter the irrelevant paths quickly. As shown
in Figure 2, we encode the LLM indicator I 1y (or Isyp) and all
reasoning paths into vector embeddings, denoted as Hy and Hp ;.
and calculate cosine similarities between them. The top-W; paths
with the highest similarity scores are selected for further evaluation.
Precise path selection. Following the initial fuzzy selection, the
number of candidate paths is reduced to Wj. At this stage, we
prompt the LLM to select the top-Wiax reasoning paths most likely
to contain the correct answer. The specific prompt used to guide
LLM in selection phase can be found in Appendix E.

Branch reduced selection. Considering that paths are often rep-
resented in natural language and can be extensive, leading to high
processing costs for LLMs, we implement a branch reduced se-
lection method integrated with the graph structure. This method
effectively balances efficiency and accuracy by further refining path
selection. Starting with D = 1, for each entity e in the entity list, we
extract the initial D-step paths from every path in the candidate set
Paths. into a new set Paths.. If the number of Paths, exceeds the
maximum designated width Wi, these paths are pruned using
precise path selection. The process iterates until the number of
paths in Paths. reaches Dyax. For example, as illustrated in Figure
2, with Wipax = 1, only the initial step paths (depicted in green)

Xingyu Tan et al.

are extracted for further examination, while paths represented by
dashed lines are pruned. This selection method enables efficient
iterative selection by limiting the number of tokens and ensuring
the relevance and conciseness of the reasoning paths.

Beam search strategy. Based on the three path pruning methods
above, PoG can support various beam search strategies, ranging
from non-reliant to fully reliant on LLMs. These strategies are
selectable in a user-friendly manner, allowing flexibility based on
the specific requirements of the task. We have defined four such
strategies in Algorithm 2 of Appendix A.2.

4.4 Question Answering

Based on the pruned paths in Section 4.3, we introduce a two-step
question-answering method.

Path Summarizing. To address hallucinations caused by paths
with excessive or incorrect text, we develop a summarization strat-
egy by prompting LLM to review and extract relevant triples from
provided paths, creating a concise and focused path. Details of the
prompts used are in Appendix E.

Question answering. Based on the current reasoning path derived
from path pruning and summarizing, we prompt the LLM to first
evaluate whether the paths are sufficient for answering the split
question and then the main question. If the evaluation is positive,
LLM is prompted to generate the answer using these paths, along
with the question and question analysis results as inputs, as shown
in Figures 2. The prompts for evaluation and generation are detailed
in Appendix E. If the evaluation is negative, the exploration process
is repeated until completion. If node expand exploration reaches its
depth limit without yielding a satisfactory answer, LLM will lever-
age both provided and inherent knowledge to formulate a response.
Additional details on the prompts can be found in Appendix E.

5 Experiments

Experimental settings. We evaluate PoG on five KGQA datasets,
ie., CWQ [38], WebQSP [51], GrailQA [12], SimpleQuestions [31],
and WebQuestions [3]. PoG is tested against methods without ex-
ternal knowledge (IO, CoT[45], SC[44]) and the state-of-the-art
(SOTA) approaches with external knowledge, including prompting-
based and fine-tuning-based methods. Freebase [5] serves as the
background knowledge graph for all datasets. Experiments are con-
ducted using two LLMs, i.e., GPT-3.5 (GPT-3.5-Turbo) and GPT-4.
Following prior studies, we use exact match accuracy (Hits@1) as
the evaluation metric. Due to the space limitation, detailed experi-
mental settings, including dataset statistics, baselines, and imple-
mentation details, are provided in Appendix C.

PoG setting. We adopt the Fuzzy + Precise Path Selection
strategy in Algorithm 2 of Appendix A.2 for PoG, with W; = 80
for fuzzy selection. Additionally, we introduce PoG-E, which ran-
domly selects one relation from each edge in the clustered question
subgraph to evaluate the impact of graph structure on KG-based
LLM reasoning. Winax and Dmax are 3 by default for beam search.

5.1 Main Results

Since PoG leverages external knowledge to enhance LLM reasoning,
we first compare it with other methods that utilize external knowl-
edge. Although PoG is a training-free, prompting-based method

Paths-over-Graph: Knowledge Graph Empowered Large Language Model Reasoning

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Table 1: Results of PoG across various datasets, compared with the state-of-the-art (SOTA) in Supervised Learning (SL) and
In-Context Learning (ICL) methods. The highest scores for ICL methods are highlighted in bold, while the second-best results
are underlined. The Prior FT (Fine-tuned) SOTA includes the best-known results achieved through supervised learning.

Method Class LLM Multi-Hop KGQA Single-Hop KGQA Open-Domain QA
CWQ WebQSP GrailQA Simple Questions WebQuestions
Without external knowledge
10 prompt[37] - GPT-3.5-Turbo 37.6 63.3 294 20.0 48.7
CoT[37] - GPT-3.5-Turbo 38.8 62.2 28.1 20.3 48.5
SC[37] - GPT-3.5-Turbo 45.4 61.1 29.6 18.9 50.3
With external knowledge
Prior FTSOTA SL - 70.4[9] 85.7[27] 75.4[11] 85.8[1] 56.3[18]
KB-BINDER[24] ICL Codex - 74.4 58.5 - -
ToG/ToG-R[37] ICL GPT-3.5-Turbo 58.9 76.2 68.7 53.6 54.5
ToG-20[28] ICL GPT-35-Tutbo - 81.1 - - -
ToG/ToG-R[37] ICL GPT-4 69.5 82.6 81.4 66.7 57.9
PoG-E ICL GPT-3.5-Turbo 71.9 90.9 87.6 78.3 76.9
PoG ICL GPT-3.5-Turbo 74.7 93.9 91.6 80.8 81.8
PoG-E ICL GPT-4 78.5 95.4 91.4 81.2 82.0
PoG ICL GPT-4 81.4 96.7 94.4 84.0 84.6
and has natural disadvantages compared to fine-tuned methods
trained on evaluation data. As shown in Table 1, PoG with GPT-3.5- R _ ! e)
Turbo still achieves new SOTA performance across most datasets. :v : “ —.
Additionally, PoG with GPT-4 surpasses fine-tuned SOTA across B gw
all the multi-hop and open-domain datasets by an average of 17.3% o
and up to 28.3% on the WebQuestions dataset. Comparing all the in- ; j*i 3 : : : .
context learning (ICL) methods, PoG with GPT-3.5-Turbo surpasses Yo s () Varing masdum deth (D)
all the previous SOTA methods. When comparing PoG with GPT- (a) CWQ (Vary Dyax) (b) CWQ(PoG)
3.5-Turbo against SOTA using GPT-4, PoG outperforms the SOTA " ——

by an average of 12.9% and up to 23.9%. When using the same LLM,
PoG demonstrates substantial improvements: with GPT-3.5-Turbo,
it outperforms SOTA by an average of 21.2% and up to 27.3% on
the WebQuestions dataset; with GPT-4, it outperforms SOTA by
16.6% on average and up to 26.7% on the WebQuestions dataset.
Additionally, PoG with GPT-3.5-Turbo outperforms methods with-
out external knowledge (e.g., IO, CoT, SC prompting) by 62% on
GrailQA and 60.5% on Simple Questions. These results show that
incorporating external knowledge graphs significantly enhances
reasoning tasks. PoG-E also achieves excellent results. Under GPT-4,
PoG-E surpasses all SOTA in ICL by 14.1% on average and up to
24.1% on the WebQuestions dataset. These findings demonstrate
that the graph structure is crucial for reasoning tasks, particularly
for complex logical reasoning. By integrating the structural infor-
mation of the question within the graph, PoG enhances the deep
reasoning capabilities of LLMs, leading to superior performance.

5.2 Ablation Study

We perform various ablation studies to understand the importance
of different factors in PoG. These ablation studies are performed
with GPT-3.5-Turbo on two subsets of the CWQ and WebQSP test
sets, each containing 500 randomly sampled questions.

Does search depth matter? As described, PoG’s dynamic deep

Accuracy (%)

—¥— PoG —— PoG-E

1

2 3
Varying maximum depth (D)

(c) WebQSP (Vary Dpax)

(d) WebQSP(PoG)

Figure 4: The accuracy of PoG and PoG-E among CWQ and
WebQSP datasets by varying different Dp,.

search is limited by Dy,qx. To assess the impact of Dyax on per-
formance, we conduct experiments with depth from 1 to 4. The
results, shown in Figures 4(a) and (c), indicate that performance
improves with increased depth, but the benefits diminish beyond a
depth of 3. Figures 4(b) and (d), showing which exploration phase
the answer is generated from, reveal that higher depths reduce the
effectiveness of both LLM-based path supplementation and node
exploration. Excessive depth leads to LLM hallucinations and dif-
ficulties in managing long reasoning paths. Therefore, we set the
maximum depth to 3 for experiments to balance performance and
computational efficiency. Additionally, even at lower depths, PoG
maintains strong performance by effectively combining the LLM’s
inherent knowledge with the structured information from the KG.

WWW °25, April 28-May 2, 2025, Sydney, NSW, Australia

Table 2: Performance of PoG and PoG-E on multi-entity and
single-entity questions of all datasets. The symbol ‘-’ indi-
cates no multi-entity question inside.

Question Set

PoG with GPT-3.5-Turbo

CWQ WebQSP GrailQA WebQuestions Simple Questions

Single-entity 70.3 93.9 92.1 81.7 78.3
Multi-entity 80.2 93.1 70.7 82.8 -
PoG-E with GPT-3.5-Turbo

Single-entity 67.5 91 88.2 76.8 80.8
Multi-entity 77.5 82.8 76.0 82.8 -

Table 3: The illustration of graph size reduction.

CWQ WebQSP GrailQA WebQuestions

Ave Entity Number 3,540,267 243,826 62,524 240,863
Ave Entity Number After Pruned 1,621,055 182,673 30,267 177,822
Ave Entitiy Reduction Proportion (%) 54% 25% 52% 26%

5.3 Effectiveness Evaluation

Effective evaluation on multi-entity questions. To evaluate
PoG’s performance on multi-entity questions, we report the accu-
racy on all test sets by categorizing questions based on the number
of topic entities. The results, shown in Table 2, demonstrate that, de-
spite the increased complexity of multi-entity questions compared
to single-entity ones, PoG maintains excellent accuracy, achieving
up to 93.9% on the WebQSP dataset. This underscores the effective-
ness of our structure-based model in handling complex multi-entity
queries. Notably, the slightly lower performance on the GrailQA
dataset can be attributed to some questions lacking matched topic
entities, which prevents effective reasoning using KG.

Effective evaluation on multi-hop reasoning. To assess PoG’s
performance on multi-hop reasoning tasks, we analyze accuracy by
categorizing questions based on the length of their ground-truth
SPARQL queries. We randomly sample 1,000 questions from CWQ
and WebQSP datasets and determine the reasoning length of each
question by counting the number of relations in their ground-truth
SPARQL queries. The distribution of questions with varying reason-
ing lengths is illustrated in Figure 5. We evaluate the performance of
PoG and PoG-E across different ground-truth lengths to understand
their effectiveness under varying query complexities. As shown in
Figure 6, the performance of PoG and PoG-E remains consistent
across different reasoning lengths. Even at the highest length levels
in the WebQSP dataset, PoG achieves excellent accuracy, reaching
up to 90%. Notably, although some questions have ground-truth
lengths of eight or more, PoG successfully addresses them with-
out matching the ground-truth length, demonstrating its ability to
explore novel paths by effectively combining the LLM’s inherent
knowledge with the structured information from the KG. These
results demonstrate the effectiveness of PoG in handling complex
multi-hop reasoning tasks.

Graph structure pruning. To evaluate the effectiveness of the
graph pruning method proposed in Section 4.1, we conduct experi-
ments using 200 random samples from each dataset. We report the
average number of entities per question before and after graph re-
duction, as well as the proportion of entities reduced, in Table 3. The
results indicate that up to 54% of entities in the CWQ dataset can be

Xingyu Tan et al.

107 CJ CcwQ M WebQSP

—
<

Number of questions

,_.
=3

1 2 3 4 5 6 7 8"
Length of paths in SPARQL

Figure 5: The lengths of the ground-truth SPARQL queries
within the CWQ and WebQSP datasets.

EE PoG B PoG-E EE PoG Bl PoG-E

80
60
40
20 20

Accuracy (%)

Accuracy (%)
o
3

1 2 5 6 7 8+

i 3
Length of paths in SPARQL

2 3 4 5 6 7
Length of paths in SPARQL

(a) CWQ (b) WebQSP

Figure 6: The accuracy of PoG and PoG-E on the CWQ and
WebQSP datasets, categorized by the different lengths of the
ground-truth answers for each question.

pruned before path exploration. This demonstrates the effectiveness
of eliminating irrelevant data from the outset.

Case study: interpretable reasoning. We also conduct the case
study to demonstrate interpretability of PoG, we present three rea-
soning examples in Table 9 of Appendix B.5. These examples feature
questions with one, two, and three entities, respectively. Through
the case study, we showcase PoG’s effectiveness in handling multi-
entity and multi-hop tasks by providing faithful and interpretable
reasoning paths that lead to accurate answers.

To further evaluate the effectiveness and efficiency of PoG, we
perform additional experiments, including pruning beam search
strategy ablation and prompt setting ablation (Appendix B.1), rea-
soning faithfulness analysis (Appendix B.2), error analysis (Appen-
dix B.3), LLM calls cost and running time analysis (Appendix B.4),
and graph reduction and path pruning case study (Appendix B.5).

6 Conclusion

In this paper, we introduce Paths-over-Graphs (PoG), a novel
method that integrates LLMs with KGs to enable faithful and inter-
pretable reasoning. PoG addresses complex reasoning tasks through
a three-phase dynamic multi-hop path exploration, combining the
inherent knowledge of LLMs with factual information from KGs.
Efficiency is enhanced by graph-structured pruning and a three-
step pruning process to effectively narrow down candidate paths.
Extensive experiments on five public datasets demonstrate that PoG
outperforms existing baselines, showcasing its superior reasoning
capabilities and interoperability.

7 Acknowledgment

Xiaoyang Wang is supported by the Australian Research Council
DP230101445 and DP240101322. Wenjie Zhang is supported by the
Australian Research Council DP230101445 and FT210100303.

Paths-over-Graph: Knowledge Graph Empowered Large Language Model Reasoning WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

References [27] Linhao Luo, Yuanfang Li, Reza Haf, and Shirui Pan. 2024. Reasoning on Graphs:
[1] Jinheon Baek, Alham Fikri Aji, Jens Lehmann, and Sung Ju Hwang. 2023. Direct Falthﬁj{l and Interprftable Large‘Lfmguage MQd?l Reasoning. In ICLR'
[28] Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li, Huaren Qu, and Jian Guo. 2024.

Fact Retrieval from Knowledge Graphs without Entity Linking. In ACL. - :
Jinheon Baek, Alham Fikri Aji, and Amir Saffari. 2023. Knowledge-augmented T]junkfonfGraph 2.0: Deep‘ and Intefpretable .Large Pa“g“age Model Reasoning
language model prompting for zero-shot knowledge graph question answering. with Knowledge Graph-guided Retrieval. arXiv preprint arXiv:2407.10805 (2024).
arXiv preprint arXiv:2306.04136 (2023). Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu.
[3] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic 2024. Unifying large language models and knowledge graphs: A roadmap. TKDE
Parsing on Freebase from Question-Answer Pairs. In EMNLP. 1533-1544. (2024). X .
[4] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, [30] Matthew E Peters, Mark Neumann, Robert L Logan IV, Roy Schwartz, Vidur Joshi,
Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Sameer Smgh’ and Nf)ah A S.mlth‘ 2.019‘ Knowledge enhanced contextual word
Nyczyk, et al. 2024. Graph of thoughts: Solving elaborate problems with large representations. arXiv preprint arXiv:1909.04164 (?019)' .
language models. In AAAL Vol. 38. 17682-17690. [31] Michael Petrochuk and Luke Zettlemoyer. 2018. SimpleQuestions Nearly Solved:
[5] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. A New Uppe{bound and Bas‘?hne Approach. In EMNIjR 554_? 38. = X
2008. Freebase: a collaboratively created graph database for structuring human (32 ngm Petroni, Aleksandra P1ktu§, AngelAa Fan, PatFICk LEWISj Majid Yaz.danl,
knowledge. In SIGMOD. 1247-1250. Nicola De Cao, James Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Maillard,
[6] Tom B Brown. 2020. Language models are few-shot learners. arXiv preprint et al. 2020. KILT: a benchmark for knowledge intensive language tasks. arXiv
arXiv:2005.14165 (2020). preprint arXiv:2009.02252 (2020).
[7] Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei [33] Vipula Rawte, Amit Sheth, and Amitava Das. 2023. A survey of hallucination in
Shuaigiang Wang, Dawei Yin, Wenqi Fan, Hui Liu, et al. 2024. Exploring the large foundation models. arXiv preprint arXiv:2309.05922 (2023).

potential of large language models (Ilms) in learning on graphs. ACM SIGKDD Ni.ls Rei'mers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
Explorations Newsletter 25, 2 (2024), 42-61. using Siamese BERT-Networks. In EMNLP.

[2

—

[29

(34

[8] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav (3] Qing Sima, Jianke Yu, Xiapyang Wangj Wenjie th’ing, Ying Zhang, anfi Xuemi'n
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se- Lin. 2924. De.ep Overlapping Community Search via Subspace Embedding. arXiv
bastian Gehrmann, et al. 2023. Palm: Scaling language modeling with pathways. preprint aerv:24Q4.14692 (2024)' .

Journal of Machine Learning Research 24, 240 (2023), 1-113. [36] Haltlz?\n Sun, .Tama Bedr'a.x—W'elss., and. Wllha@ W Cohen. 2019. Pullnet: Open

[9] Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya Godbole, Ethan Perez, Jay Yoon domain question answering with iterative retrieval on knowledge bases and text.

Lee, Lizhen Tan, Lazaros Polymenakos, and Andrew McCallum. 2021. Case-based arXiv preprint arXiv:1904.09537 (2019).

Reasoning for Natural Language Queries over Knowledge Bases. In EMNLP. [37] Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun

[10] Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. 2022. Gong, Llond‘Nl’ Heung-Yeung Shum, and Jian Guo. 2024. Think-on-Graph: Deep

Complexity-based prompting for multi-step reasoning. In ICLR. and Responsible Reasoning of Large Language Model on Knowledge Graph. In
ICLR.

[11] Yu Gu, Xiang Deng, and Yu Su. 2023. Don’t Generate, Discriminate: A Proposal

for Grounding Language Models to Real-World Environments. In ACL. [38] Alon Talmor and Jonathan Berant. 2018. The Web as a Knowledge-Base for

[12] Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and Yu Answering Complex Questif)ns. .In NAACL. i
Su. 2021. Beyond LLD.: Three Levels of Generalization for Question Answering [39] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. 2018. Com-
on Knowledge Bases. In WWW. 3477-3488. monsenseqa: A question answering challenge targeting commonsense knowledge.
[13] Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, and Shi Han. 2023. arXiv preprint arXiv:1811.00937 (2018).

[40

Xingyu Tan, Jingya Qian, Chen Chen, Sima Qing, Yanping Wu, Xiaoyang Wang,

Gpt4graph: Can large language models understand graph structured data? an " . 5
and Wenjie Zhang. 2023. Higher-Order Peak Decomposition. In CIKM.

empirical evaluation and benchmarking. arXiv preprint arXiv:2305.15066 (2023). ‘ . ; : ..
[14] Lingbing Guo, Zequn Sun, and Wei Hu. 2019. Learning to exploit long-term [41] Hggo Touv?on,. Louis Martin, Kevin Stone, Peter Al_l?ert, Amjad Almahalrl, Yas-

relational dependencies in knowledge graphs. In International conference on mine Babaei, Nikolay Bashlykov, Soumyg Batra, Prajjwal Bhargava, Shruti Bho;-

machine learning. PMLR, 2505-2514. ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[15] Tiezheng Guo, Qingwen Yang, Chen Wang, Yanyi Liu, Pan Li, Jiawei Tang, Dapeng . ! N i X .
Li, and Yingyou Wen. 2024. Knowledgenavigator: Leveraging large language [42] Jinghao megi Yanping Wu,AXlaoyang Wangj Ymg ZlAlang,A Lu Qin, Wenpe Zhang,
models for enhanced reasoning over knowledge graph. Complex & Intelligent and Xuemin Lin. 2024. Efficient Influence Minimization via Node Blocking. Proc.
Systems 10, 5 (2024), 7063-7076. VLDB Endow. (2024). o

[16] Chengkai Huang, Yu Xia, Rui Wang, Kaige Xie, Tong Yu, Julian McAuley, and [43] Kai Wang, Yuwei Xu, Zhiyong Wu, and Sigiang Luo. 2024. LLM as Prompter:

Low-resource Inductive Reasoning on Arbitrary Knowledge Graphs. In ACL.
Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv preprint arXiv:2203.11171 (2022).

Lina Yao. 2025. Embedding-Informed Adaptive Retrieval-Augmented Generation

of Large Language Models. In COLING. [44
[17] Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, and Ji-Rong

Wen. 2023. Structgpt: A general framework for large language model to reason

over structured data. arXiv preprint arXiv:2305.09645 (2023). [45] Jason Wei, Xuezhi Wang, Dale Schuulfmans, Maarten Bosma, ng ‘Xia, Ed Chi’
[18] Akhil Kedia, Mohd Abbas Zaidi, and Haejun Lee. 2022. FiE: Building a Global Quoc V'Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning

Probability Space by Leveraging Early Fusion in Encoder for Open-Domain m lAarge langl}age models. NeurAIPS (2022). .

Question Answering. In EMNLP. [46] Yilin Wen, Zifeng Wang, and Jlmeng Sun. 2024. Mindmap: Knowledge graph
[19] Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter prompting sparks graph of thoughts in large language models. In ACL.

[47

Yanping Wu, Renjie Sun, Xiaoyang Wang, Dong Wen, Ying Zhang, Lu Qin, and

Clark, and Ashish Sabharwal. 2022. Decomposed prompting: A modular approach e Y : ' -
Xuemin Lin. 2024. Efficient Maximal Frequent Group Enumeration in Temporal

for solving complex tasks. arXiv preprint arXiv:2210.02406 (2022). oo
[20] Jiho Kim, Yeonsu Kwon, Yohan Jo, and Edward Choi. 2023. Kg-gpt: A general Bipartite Graphs. Proc. VLDB Endow. (2024). .
framework for reasoning on knowledge graphs using large language models. [48 Shuny'u Yao, Dlan Yu, Jeffrey Zhao, Izhak Shafran,'Tom Griffiths, Yuan Cao, a'nd
arXiv preprint arXiv:2310.11220 (2023). Karthik Narasimhan. 2024. Tree of thoughts: Deliberate problem solving with
Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke large language models. NeurIP S (2024). i X
Iwasawa. 2022. Large language models are zero-shot reasoners. NeurIPS (2022). [49] Shunyu Yao, Jeffrey Zhao, Dian Yuj Nan Du, Izhak Shafmfl’ K.arthlk Narasimhan,
[22] Fan Li, Xiaoyang Wang, Dawei Cheng, Wenjie Zhang, Ying Zhang, and Xuemin and ‘Yuan C;AmA 2022: React: Synergizing reasoning and acting in language models.

Lin. 2024. Hypergraph Self-supervised Learning with Sampling-efficient Signals. arXiv preprint arXiv:2210.03629 (2022).

[21

arXiv preprint arXiv:2404.11825 (2024). [50] Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, and Caiming Xiong. 2021.
[23] Fan Li, Zhiyu Xu, Dawei Cheng, and Xiaoyang Wang. 2024. AdaRisk: Risk- Rng—kbqa: Genefation aygmenFed iterative ranking for knowledge base question
adaptive Deep Reinforcement Learning for Vulnerable Nodes Detection. IEEE answering. arXiv preprint aerv:2109.08§78 (2021). . . .
TKDE (2024). [51] Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-Wei Chang, and Jina Suh.
[24] Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su, and Wenhu Chen. 2023. 2016. The Value of Semantic Parse Labeling for Knowledge Base Question
Few-shot In-context Learning on Knowledge Base Question Answering. In ACL. Answering. In ACL. 201-206. i L
[25] Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng Ding, Shafiq Joty, Soujanya (52] Hang Zhang, Yeyun Gong, Yelong Shen, Weisheng Li, Jiancheng Lv, Nan Duan,
Poria, and Lidong Bing. 2023. Chain-of-knowledge: Grounding large language and Welzhu Chen. 2021. Poolingformer: Long document modeling with pooling
models via dynamic knowledge adapting over heterogeneous sources. arXiv attention. In ICML. 12437-12446. .) .
preprint arXiv:2305.13269 (2023). [53] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. 2023. Automatic Chain
[26] Linhao Luo, Jiaxin Ju, Bo Xiong, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. of Thought Prompting in Large Language Models. In ICLR.

[54

Ruochen Zhao, Xingxuan Li, Shafiq Joty, Chengwei Qin, and Lidong Bing. 2023.

2023. Chatrule: Mining logical rules with large language models for knowledge)) -
Verify-and-Edit: A Knowledge-Enhanced Chain-of-Thought Framework. In ACL.

graph reasoning. arXiv preprint arXiv:2309.01538 (2023).

WWW °25, April 28-May 2, 2025, Sydney, NSW, Australia Xingyu Tan et al.

A Algorithm A.2 Path Pruning

A.1 Exploration We summarize the comprehensive algorithmic procedure of path

We summarize the comprehensive algorithmic procedure for explo- pruning detailed in Section 4.3 as presented in Algorithm 2.

ration detailed in Section 4.2 as presented in Algorithm 1. Algorithm 2: PathPruning

Input :Candidate paths(Paths.), question and split question
(Q = g + gsplir), indicator (I), maximum width (Wax),
maximum depth (Dpax), entity list (list)

Output : Pruned candidate paths (Paths.)

if Case = Fuzzy Selection Only then

L FuzzySelect(Pathsc, Q, I, Whax);

Algorithm 1: Exploration

Input :Question subgraph (Gg), source KG (G),question and split
question (Q = q + qsp1ir), topic entities (Topic(q)), LLM
indicator (ILLm), predict depth (Dpredict), maximum depth
(Dmax), maximum width (Wpax), and path pruning case
(case)

Output : PoG answers (a(q)), final reasoning path (Pathss(q))

N =

©w

else if Case = Fuzzy + Precise Path Selection then

/% Start with topi tit th lorati p 4 FuzzySelect(Paths., Q,I, W;);
* *
art wi opic enti Ay path expioration 5 PrecisePathSelect(Pathsc, Q, I, Wnax)

1 Listy < Reorder(Topic(q), ILLm), D < min(Dpredicts Dmax); =
2 while D < D.... do 6 else if Case = Fuzzy + Branch Reduced Selection then

- max
3 Paths; « EntityPathFind (ListT, D,Gg); 7 FuzzySelect(Pathsc, Q, I, W1);
4 PathPruning(Pathsy, O, I, Winaxs Dimax, ListT, case); 8 | BranchReduceSelect(Pathsc, Q, I, Wiax, Dmax. list);
5 Answer, Pathst < QuestionAnswering(Paths;, Q, I 1m); 9 else if Case = Fuzzy + Branch Reduced + Precise Path then
6 if "{Yes}" in Answer then return Answer, Pathsr; /% case = 3-Step Beam Search */
7 else D — D +1: FuzzySelect(Pathsc, Q,1, W1);

10 BranchReduceSelect(Paths., Q, I, Wa, Diax, list);

/% LLM supplement path exploration procedure x/ 1 PrecisePathSelect(Pathsc, Q, I, Wiax)
8 Pathss «— []; - .
o Predict(q) «SupplementPrediction(Pathst, O, ILx): 12 Procedure BranchReduceSelect(Paths., Q, I, W, Dyax, list)

13 D « 1, Paths, «— 0;

10 for each e, I, € Predict(q) do
sup(e) 14 while |Pathsc| > W A D < Dpax do

11 Lists « Reorder (ListT + e, Igyp(e))s

. . ; for each e € list do
12 Paths; « EntityPathFind (Lists, Dmax,Gq); 5
1 Paths, — Paths, + FuzzySelect (Pathsé,lsup(e), Wina): 16 L Pathse «— Pathse U ExtractHeadSteps(Pathsc, e, D);
. . . 17 if |Pathse| > W then
" iathPrun?g(: athss, Q. ILth’Z]maX’Pmax})LlS;S’ cas;’) ’ 18 PrecisePathSelect(Pathse, Q, 1, W);
1 'fn‘:s\:(/er, "a‘t ;5 - Que}ftlon nswezng(atPSS,hQ, Lw); 19 Paths. « IntersectMatchUpdate (Pathse, Paths;);
16 if "{Yes}" in Answer then return Answer, Pathss ; 20 Paths, — 0:
/* Node expand exploration procedure */ ” DeD+1:

17 Visted « 0, D « 1, Pathse « Pathst + Pathss;
18 PathPruning(Pathse, Q, ILLM, Winaxs Dmax List, case);;
19 while D < Dy, do
20 for each e € ExtractEntity(Paths.) A e ¢ Visted do
21 Related_edges = Find_1_hop_Edges(G, e);
L Paths, < MergeTogether (Paths., Related_edge);

22 if |Pathsc| > W then PrecisePathSelect(Pathsc, Q,I, W);

22

23 PathPruning(Pathse, Q, ..M, Winax> Dmax, ListT, case);

24 Answer, Paths, < QuestionAnswering(Pathse, Q, I11m);
25 if "{Yes}" in Answer then return Answer, Paths,;

26 else Visted «— VistedUe; D «— D +1;

27 Paths; < Pathst + Pathss + Pathsg ;

28 PathPruning(Pathsy, Q, Iim, Wmax> Dmax, Listr, case);

29 Answer, Pathsp «— QuestionAnsweringFinal(Paths;, Q, Iim);
30 Return Answer, Pathsy;

Paths-over-Graph: Knowledge Graph Empowered Large Language Model Reasoning

B Experiment
B.1 Additional Ablation Study

Compare the effect of different beam search strategies. As
introduced in Section 4.3, PoG supports various beam search strate-
gies, ranging from non-reliant to fully reliant on LLMs, selectable in
a user-friendly manner. To evaluate the computational cost and per-
formance, we test four cases outlined in Algorithm 2. In the 3-Step
Beam Search case, we set Wy = 20 for internal narrowing. The
Fuzzy Selection approach, as described in Section 4.3, utilizes
all candidate paths and a LLM-generated indicator for encoding
and comparison. We report accuracy, average LLM calls in total,
and average token input during the path pruning for each beam
search strategy applied to PoG and PoG-E in Table 4 and Table 5.
These results indicate that PoG/PoG-E with Fuzzy and Precise
Path Selection achieves the highest accuracy. Additionally, the
BranchReduced Selection method, which leverages the graph
structure, not only delivers excellent results but also reduces to-
ken usage by over 50% (65%) with only a +2% (+4.3%) difference in
accuracy on PoG (PoG-E) compared to the best-performing strat-
egy. Furthermore, the Fuzzy Selection method, which employs
lightweight models instead of relying solely on LLMs, also demon-
strates strong performance. These results validate the effectiveness
of our beam search strategies and underscore the importance of
structure-based faithful path reasoning.

Table 4: Performance comparison of PoG with different beam
search methods on CWQ and WebQSP.

PoG Evaluation CWQ WebQSP
w/ Fuzzy Selection Accuracy 57.1 86.4
Token Input - -
LLM Calls 6.8 6.5
w/ Fuzzy and Accuracy 79.3 93.0
BranchReduced Selection Token Input 101,455 328,742
LLM Calls 9.7 9.3
w/ Fuzzy and Accuracy 814 93.9
Precise Path Selection Token Input 216,884 617,448
LLM Calls 9.1 7.5
w/ 3-Step Beam Search Accuracy 79.8 91.9
Token Input 102,036 369,175
LLM Calls 8.8 9.0

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

How do summary prompts affect? Inspired by GoT [4], we utilize
summary prompts to reduce LLM hallucinations and decrease com-
putational costs. To evaluate their impact, we conduct an ablation
study comparing PoG and PoG-E with and without path summa-
rization. We measure both accuracy and average token input to
the LLM API during the path pruning phase to measure efficiency
and effectiveness. The results, present in Tabel 6, show that using
graph summaries increases accuracy by up to 10% on the CWQ
dataset with PoG-E, while reducing token input by up to 36% on
WebQSP. These results indicate hat path summarization effectively
minimizes LLM hallucinations, enhances the LLM’s understanding
of the explored paths, facilitates answer retrieval, enables earlier
termination of the reasoning process, and reduces costs.

Table 5: Performance comparison of PoG-E with different
beam search methods among CWQ and WebQSP datasets.

PoG-E Evaluation CWQ WebQSP
w/ FuzzySelect Accuracy 62.31 82.3
Token Input - -
Ave LLM Calls 6 6.3
w/ Fuzzy and Accuracy 71.9 88.4
BranchReduced Selection = Token Input 128,407 371,083
Ave LLM Calls 9.4 9.1
w/ Fuzzy and Accuracy 80.4 914
Precise Path Selection Token Input 344,747 603,261
Ave LLM Calls 8.3 7.4
w/ 3-Step Beam Search Accuracy 73.87 89.4
Token Input 120,159 411,283
Ave LLM Calls 8.3 9.1

Table 6: Performance comparison of PoG and PoG-E with and
without path summarizing on CWQ and WebQSP datasets.

Method Evaluation CWQ WebQSP

PoG

w/ Path Summarizing Accuracy 814 93.9
Token Input 216,884 297,359

w/o Path Summarizing Accuracy 74.7 91.9
Token Input 273,447 458,545

PoG-E

w/ Path Summarizing Accuracy 80.4 91.4
Token Input 314,747 273,407

w/o Path Summarizing Accuracy 70.4 90.4
Token Input 419,679 428,545

WWW °25, April 28-May 2, 2025, Sydney, NSW, Australia

B.2 Reasoning Faithfulness Analysis

Overlap ratio between explored paths and ground-truth
paths. We analyzed correctly answered samples from three datasets
to investigate the overlap ratio between the paths P explored by
PoG and the ground-truth paths S in SPARQL queries. The overlap
ratio is defined as the proportion of overlapping relations to the
total number of relations in the ground-truth SPARQL path:

|Relation(P) N Relation(S)|
|Relation(S)| ’

where Relation(P) denotes the set of relations in path P. Figure 7
illustrates the distribution of questions across different overlap ra-
tios. For the WebQSP dataset, PoG achieves the highest proportion
of fully overlapping paths with the ground truth, reaching approx-
imately 60% accuracy. In contrast, PoG-E applied to the GrailQA
dataset shows the highest proportion of paths with up to 70% non-
overlapping relations, indicating that PoG-E explores novel paths
to derive the answers. The different results between PoG and PoG-E
are due to PoG-E’s strategy of randomly selecting one related edge
from each clustered edge. This approach highlights the effective-
ness of our structure-based path exploration method in generating

diverse and accurate reasoning paths.
40 40

Ratio(P) =

w
S
w
=]

)
1S}
o
>

Percentage (%)
Percentage (%)

—
1S
-

1=

-

0 (0,25] (25,50] (50,75](75,100

00 0 (0,25] (25,50] (50,75](75,100) 100
Overlap Ratio (%)

Overlap Ratio (%)

(a) CWQ (PoG) (b) CWQ (PoG-E)

o
=)
=Y
S

N}
=3

Percentage (%)
I
3
Percentage (%)
=
3

|
1)
S|

0 (0.25] (25,50] (50,75](75,100
Overlap Ratio (%)

0 (0,25] (25,50] (50,75](75,100) 100
Overlap Ratio (%)

(c) WebQSP (PoG) (d) WebQSP (PoG-E)

Percentage (%)
Percentage (%)

0 (0,25] (25,50] (50,75](75,100) 100 0 (0,25] (25,50] (50,75](75,100) 100
Overlap Ratio (%) Overlap Ratio (%)

(e) GrailQA (PoG) (f) GrailQA (PoG-E)

Figure 7: The path overlap ratio of PoG and PoG-E among
CWQ, WebQSP, and GrailQA datasets.

Xingyu Tan et al.

Evidence of answer exploration sources. We conduct an analy-
sis of correctly answered samples from three datasets to investigate
the sources of evidence used by the LLM in generating answers, as
illustrated in Figure 8. Specifically, we categorize all generated an-
swers into three cases: KG only, LLM-inspired KG, and KG-inspired
LLM. In the KG only scenario, answers are generated solely based
on KG paths. The LLM-inspired KG case involves the LLM predict-
ing an answer using its inherent knowledge and subsequently using
the KG to verify its correctness. Conversely, in the KG-inspired LLM
case, the paths generated by the KG are insufficient to reach the
answer, and the LLM supplements the reasoning using its inherent
knowledge. As shown in the figure, up to 14% of answers are gener-
ated through the KG-inspired LLM approach, and up to 9% involve
LLM-inspired KG path supplementation. Compared to previous
work that integrates LLM inherent knowledge with KG data[37],
PoG more effectively leverages the strengths of both sources. These
results demonstrate that PoG is a faithful reasoning method that
primarily relies on KG-based reasoning while being supplemented
by the LLM, ensuring both accuracy and interpretability in answer

generation.
CWQ(%) WebQSP(%) GrailQA(%)
12 9 3y
4
9
KG Only
LLM Inspired KG
78 86 o KG Inspired LLM
(a) PoG
CWQ(%) WebQSP(%) GrailQA(%)
14 10 6,
2
7
KG Only
LLM Inspired KG
77 87 o KG Inspired LLM
(b) PoG-E

Figure 8: The proportions of answer evidence of PoG and
PoG-E among CWQ, WebQSP, and GrailQA datasets.

Paths-over-Graph: Knowledge Graph Empowered Large Language Model Reasoning

B.3 Error Analysis

To further analyze the integration of LLMs and KGs, we conduct an
error analysis on the CWQ, WebQSP, and GrailQA datasets. We cat-
egoriz errors into four types: (1) answer generation error, (2) refuse
error, (3) format error, and (4) other hallucination errors. Note that
answer generation error occurs when PoG provides an accurate
reasoning path, but the LLM fails to extract the correct answer from
it. The distribution of these error types is illustrated in Figure 9.
The results indicate that using more powerful LLMs reduces the
number of "other hallucination errors,' "refuse errors," and "answer
generation errors," as the model offers enhanced reasoning capa-
bilities based on the retrieved data. Specifically, the reduction in
"answer generation errors" shows the reasoning paths provided by
PoG are effectively utilized by more advanced LLMs. However, we
observe an increase in "format errors" with more powerful LLMs,
which may be attributed to their greater creative flexibility.

awQ WebQSP GrailQA
250 Others Hallucination Error
» 200 Refuse Answer
%— I Format Error
£ 150 l —
1%}
2100 . —
w
50) - - .
0
A JPPEN N (N DN (K N N N (N N (&
<3P o< <57 ot <57 ot <3P o< <3P ¢ <5 gt
S @@ F & @G S & @@
oV o QOGX\QOGX oV’ Q&X\Qo& <" ® ro,:’c\@&

Figure 9: The error instances and categories of PoG and PoG-
E in the CWQ, WebQSP, and GrailQA datasets.

B.4 Efficiency Analysis

LLM calls cost analysis. To evaluate the cost and efficiency of
utilizing LLMs, we conducted an analysis of LLM calls on the CWQ,
WebQSP, and GrailQA datasets. Initially, we examined the propor-
tion of questions answered with varying numbers of LLM calls,
as depicted in Figure 10. The results indicate that the majority of
questions are answered within nine LLM calls across all datasets,
with approximately 80% and 50% of questions being resolved within
six calls on CWQ and WebQSP, respectively. These findings demon-
strate PoG’s efficiency in minimizing LLM usage costs. Furthermore,
we compared the average number of LLM calls required by PoG
with the current SOTA method, ToG [37], as shown in Table 7.
Since we utilized identical datasets for WebQSP, GrailQA, Simple
Questions, and WebQuestions, we report the ToG results from their
paper. The comparison reveals that PoG achieves comparable or
superior accuracy while reducing the number of LLM calls by up
to 40% on the GrailQA dataset compared to ToG. This improve-
ment is attributed to PoG’s dynamic exploration strategy, which
avoids starting from scratch, and its effective use of graph structures
to prune irrelevant information, thereby significantly decreasing
computational costs.

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

cwa WebQSP GrailQA

®
o

Percentage %
> =}
s 5

N
o

0
), S D ADAD B AYY A X), 3 D ADAS D 43N A X), S5 D ADAD A 43N A X
e \6'@%1%6{\%? > et \‘3‘@%1{28%%1 Yy et \@'9%1%9{@? Yy

Number of LLM calls

Figure 10: The proportion of question of PoG and PoG-E
by different LLM Calls among CWQ, WebQSP, and GrailQA
datasets

Table 7: Average LLM calls per question of PoG and ToG
among all datasets.

Method CWQ WebQSP GrailQA Simple Questions WebQuestions

PoG 10.7 8.3 6.5 6.1 9.3
ToG - 11.2 10.6 8.7 10.5

Running time analysis. To further evaluate the processing ef-
ficiency of PoG, we conducted extensive evaluations focusing on
average accuracy, LLM call frequency, and running time on multi-
hop question datasets GrailQA and CWQ. The results, presented in
Table 8, compare the performance of ToG and PoG across various
beam search strategies. The data indicate that while higher accuracy
slightly increases runtime, PoG effectively balances accuracy with
reduced LLM call costs. Specifically, PoG reduces LLM call costs by
up to 53.5% while increasing accuracy by up to 33.4%. This allows
users to tailor the PoG framework to their specific needs regarding
accuracy, cost, and runtime. All PoG setting provide significantly
lower costs. For instance, on the GrailQA dataset, PoG with 3-step
beam search reduces LLM call costs by 39.6% and improves accuracy
by 33.1%, with only a 1.14% increase in runtime. A similar trend is
also observed in the CWQ dataset.

Table 8: Running time evaluation of ToG and PoG with dif-
ferent beam search methods on CWQ and GrailQA.

Model Evaluation CWQ GrailQA
ToG Accuracy 53.1 59.3
Time (s) 78.7 14.8
LLM Calls 213 10.1
PoG Accuracy 814 92.7
Time (s) 118.9 214
LLM Calls 9.1 6.5
PoG Accuracy 79.8 92.4
w/ 3-Step Beam Search Time (s) 87.5 15.0
LLM Calls 8.8 6.1
PoG Accuracy 57.1 83.0
w/ Fuzzy Selection Time (s) 109.7 15.7

LLM Calls 6.8 4.7

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

B.5 Case Study

Case study: graph reduction and path pruning. We conducted
a case study using the example question presented in Figure 2 to il-
lustrate the effects of graph pruning and path pruning on the graph
structure. Figure 11(a) shows the results of graph pruning, where
vertices in blue are selected as part of the question subgraph, and
vertices in black are pruned. In this sample, the number of entities
is reduced from 16,740 to 1,245, resulting in a 92% reduction of
vertices. Figures 11(b) and 11(c) demonstrate the question subgraph
induced by the blue vertices in Figure 11(a) and the results after
applying fuzzy and precise path selection. In these figures, vertices
in blue represent the selected entity after each pruning, vertices in
yellow represent the topic entities, and the vertex in red denotes the
final answer entity. From these graphs, we observe that utilizing the
graph structure allows for the rapid pruning of irrelevant vertices,
ensuring that the reasoning paths remain faithful and highly rele-
vant to the question since all vertices within the question subgraph
are interconnected with all topic entities, thereby maintaining the
integrity and relevance of the reasoning process.

(a) Graph pruning (b) Question subgraph
L)
e e . e
« & ‘ 'j i*/
L IS

(c) Fuzzy selection (d) Precise selection
Figure 11: Visualization of graph reduction and Path selec-
tion.

Case study: interpretable reasoning. In this section, we present
Table 9, which illustrates PoG’s interpretability through case studies
involving questions with one, two, and three entities. These exam-
ples demonstrate PoG’s effectiveness in handling multi-entity and
multi-hop tasks by providing clear and understandable reasoning
paths that lead to accurate answers.

Xingyu Tan et al.

C Experiment Details

Experiment datasets. To evaluate PoG’s capability in multi-
hop knowledge-intensive reasoning tasks, we assess it on four
KBQA datasets: three multi-hop datasets (CWQ [38], WebQSP [51],
GrailQA [12]) and one single-hop dataset (SimpleQuestions [31]).
Additionally, to examine PoG on more general tasks, we include
an open-domain QA dataset, WebQuestions. For the evaluation of
large datasets such as CWQ, GrailQA, and SimpleQuestions, we
utilize a random sample of 1,000 test cases from CWQ and employ
the 1,000 samples previously reported by ToG [37] to facilitate a
comparison with the SOTA while also minimizing computational
costs. Freebase serves as the background knowledge graph for all
datasets, which encompasses approximately 88 million entities,
20,000 relations, and 126 million triples [5, 27]. The statistics of the
datasets utilized in this study are detailed in Table 10. The source
code has been publicly available!.

Baselines. Inspired by ToG [37], we compare our method with stan-
dard prompting (I0), Chain-of-Thought (CoT), and Self-Consistency
(SC) promptings with six in-context exemplars and "step-by-step”
reasoning chains. For each dataset, we also include previous SOTA
works for comparison. For a fair play, we compare with previous
SOTA among all prompting-based methods and previous SOTA
among all methods respectively. Since ToG is the current SOTA
prompting-based method, we directly refer to their results and
those of other baselines reported in their paper for comparisons.
Experimental implementation. Leveraging the plug-and-play
convenience of our framework, we experiment with two LLMs:
GPT-3.5 and GPT-4. We use the OpenAl API to access GPT-3.5
(GPT-3.5-turbo) and GPT-4. Aligning with ToG, we set the temper-
ature parameter to 0.4 during the exploration process (to increase
diversity) and to 0 during the reasoning process (to ensure repro-
ducibility). The maximum token length for generation is set to 256.
In all experiments, we set both Wipax and Dpax to 3 for beam search.
All the experiments are conducted on a machine with Intel Xeon
Gold 6248R CPU, Nvidia A5000 GPU and 512GB memory.

Table 10: Statistics of the datasets used in this paper. I denotes
we randomly select 1,000 samples from the CWQ test set to
create the experiment testing set due to the abundance of test
samples. * denotes that we utilize the 1,000 samples reported
by ToG [37] to compare with the state-of-the-art.

Dataset Answer Format Test Train

ComplexWebQuestions (CWQ) T Entity 1,000 27,734

WebQSP Entity/Number 1,639 3,098
GrailQA* Entity/Number 1,000 44,337
Simple Question™® Entity/Number 1,000 14,894
WebQuestions Entity/Number 2,032 3,778

!https://github.com/SteveTANTAN/PoG

Paths-over-Graph: Knowledge Graph Empowered Large Language Model Reasoning

Table 9: Examples of faithful and interpretable reasoning of PoG.

Field Content
Question Lou Seal is the mascot for the team that last won the World Series when?
Answer 2014 World Series
Topic Entity Lou Seal
LLM indicator "Lou Seal" - mascot for - team - last won - World Series - when
Split Question split_question 1: What team is "Lou Seal" the mascot for?
split_question 2: When did the last World Series win occur for the team with Lou Seal as the mascot?
Reasoning Path {Lou Seal} — sports.mascot.team — {San Francisco Giants} — sports.sports_team.championships

— {2014 World Series, 2012 World Series, 2010 World Series}

PoG answer

answer: {2014 World Series}

reason: From the given path {Lou Seal} — sports.mascot.team — {San Francisco Giants}, {San
Francisco Giants} is the team that "Lou Seal" serves as the mascot for. From {San Francisco Giants} —
sports.sports_team.championships — {2014 World Series, 2012 World Series, 2010 World Series}, the
last World Series won by the {San Francisco Giants} is in {2014}. Therefore, the provided knowledge
graph path is sufficient to answer the overall question, and the answer is {2014 World Series}.

Question What European Union country sharing borders with Germany contains the Lejre Municipality?

Answer Denmark

Topic Entity {Germany, Lejre Municipality}

LLM indicator "Lejre Municipality” — contained by - European Union country (answer)- shares borders with-
"Germany"

Split Question split_question 1: What European Union country shares borders with "Germany"?
split_question 2: What country contains the Lejre Municipality?

Reasoning Path {Lejre Municipality} — location.administrative_division.country — {Denmark} — loca-

tion.location.containedby — {Eurasia} — location.location.contains — {Germany},

{Lejre Municipality} — location.administrative_division.country — {Denmark} —
base.locations.countries. continent — {Europe} — location.location.contains — {Western
Europe} — location.location.contains — {Germanyy}

PoG answer

answer: {Denmark}

reason: From {Denmark} — location.location.containedby — {Eurasia} —location.location.contains
— {Germany}, Denmark is European Union country shares borders with "Germany". From {Lejre
Municipality} — location.administrative_division.country — {Denmark}, Denmark is a country
contains the Lejre Municipality Both paths lead to Denmark, which is the European Union country
sharing borders with Germany and containing the Lejre Municipality. Therefore, the provided
knowledge graph path is sufficient to answer the main question, and the answer is {Denmark}.

Question What Central Tiem Zone continent do the Falkland Islands belong to?
Answer Americas
Topic Entity {Falkland Islands, Continent, Central Time Zone}
LLM indicator answer("Central Time Zone") — owns - answer("Continent")- located contain -"Falkland Islands"
Split Question split_question 1:What continent do the Falkland Islands belong to?
split_question 2: What Central Time Zone does the continent belong to?
Reasoning Path {Central Time Zone} — time.time_zone.locations_in_this_time_zone — {Americas} — com-

mon.topic.not able_types — {Continent} — common.topic. notable_types — {Americas} — loca-
tion.location.con tains —{ Falkland Islands}

PoG answer

answer: {Americas}

reason: From {Continent} — common.topic.notable_types — {Americas} — location.location. con-
tains —{ Falkland Islands}, Americas is the continent Falkland Islands belong to. From {Central
Time Zone} — time.time_zone.locations_in_this_time_zone — {Americas} — common.topic. no-
table_types — {Continent}. Americas is the Central Time Zone. Therefore, the provided knowledge
graph path is sufficient to answer the overall question, and the answer is {Americas}.

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

D SPARQL

This section outlines the pre-defined SPARQL queries used for
interacting with the knowledge graph and constructing graphs for
our experiments.

D.1 1-hop Entity and Relation Search

To facilitate the retrieval of 1-hop neighbors of entities within the

Freebase Knowledge Graph, we have predefined a SPARQL query.

This query is designed to be executed by simply substituting the
appropriate ID for the query entity ID. It returns the connected
entities’ IDs and their associated relations’ IDs, indicating whether
the connected entity is at the tail or the head of the relation.

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT ?relation ?connectedEntity ?direction
WHERE {

{
ns:ID ?relation ?connectedEntity
BIND("tail" AS ?direction)

b

UNION

{
?connectedEntity ?relation ns:ID
BIND (AS ?direction)

3

D.2 Short Textual Description

The following predefined function implements the retrieval of short
textual descriptions, D(.), for converting the identifiers (IDs) of
entities or relations into natural language descriptions.

PREFIX ns: <http://rdf.freebase.com/ns/>

SELECT DISTINCT ?tailEntity

WHERE {

{
?entity ns:type.object.name ?tailEntity
FILTER (?entity = ns:ID)

b

UNION

{
?entity <http://www.w3.0rg/2002/07/

owlsameAs> ?tailEntity

FILTER (?entity = ns:ID)

b

Xingyu Tan et al.

D.3 1-hop Subgraph Search

To facilitate subgraph detection in Section 4.1, we implement the
1-hop subgraph detection feature by integrating SPARQL functions
described in Appendix D.1 and D.2. The purpose of this function
is to retrieve, in a single SPARQL query, the 1-hop neighbors of a
given query with their IDs, natural language names, and connected
relationships, specifying whether the connected entity is at the tail
or the head of the relationship.

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT ?relation ?connectedEntity ?connectedEntityName ?
direction
WHERE {
{
ns:ID ?relation ?connectedEntity
OPTIONAL {
?connectedEntity ns:type.object.name ?
name
FILTER(lang(?name) = 'en')
}
BIND (COALESCE (?name, "Unnamed
Entity") AS ?connectedEntityName)
BIND("tail" AS ?direction)
}
UNION
{
?connectedEntity ?relation ns:ID
OPTIONAL {
?connectedEntity ns:type.object.name ?
name
FILTER(lang(?name) = 'en')
}
BIND (COALESCE (?name, "Unnamed
Entity") AS ?connectedEntityName)
BIND (AS ?direction)

Paths-over-Graph: Knowledge Graph Empowered Large Language Model Reasoning WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

E Prompts

In this section, we detail the prompts required for our main experimental procedures.

Question Analysis Prompt Template

You will receive a multi-hop question, which is composed of several interconnected queries, along
with a list of topic entities that serve as the main keywords for the question. Your task is to break the
question into simpler parts, using each topic entity once and provide a Chain of Thought (CoT) that
shows how the topic entities are related. Note: Each simpler question should explore how one topic
entity connects to others or the answer. The goal is to systematically address each entity to derive
the final answer.

In-Context Few-shot

Q: {Query}

Topic Entity: {Topic Entity}
A:

LLM Supplement Prompt Template

r
\.

Using the main question, a possibly uncertain chain of thought generated by a language model,
some related split questions, paths from the "Related_paths" section, and main topic entities: please
first provide three predicted results, and second offer three possible chains of thought that could lead
to these results, using the provided knowledge paths and your own knowledge. If any answers are
unclear, suggest alternative answers to fill in the gaps in the chains of thought, following the same
format as the provided examples.

In-Context Few-shot

Q: {Query)

Topic Entity: {Topic Entity}
Think Indicator:{Think Indicator}
Split Question:{Split Question}
A:

where {Think Indicator}, and {Split Question} are obtained in section 4.1. An indicator example is shown in Figure 2.

Precise Path Select Prompt Template

Given a main question, a LLM-generated thinking Cot that considers all the entities, a few split
questions that you can use one by one and finally obtain the final answer, and the associated retrieved
knowledge graph path, {set of entities (with id start with "m.")} -> {set of relationships} -> {set of
entities(with id start with "m.")}, Please score and give me the top three lists from the candidate paths
set can be highly to be the answer of the question.

In-Context Few-shot

Q: {Query}

Think Indicator:{Think Indicator}
Split Question:{Split Question}
Candidate Paths:{Candidate Paths}
A:

{Candidate Paths} denotes the retrieved reasoning paths Final,aths to be selected in this request which are formatted as a series of

structural sentences:
{eox, - €0z} — ry — {e1xs o1z} > ... > r; — {e1xs - €12}

{eox, ... €0z} = r1; = {eix, .1z} — ... — r; — {e1xs €12}
where, i and j in ry;, 1, represent the i-th, j-th relation from each relation edge in the clustered question subgraph. And e is constructed by
its ID and natural language name D (ID).

WWW °25, April 28-May 2, 2025, Sydney, NSW, Australia Xingyu Tan et al.

Path Summarizing Prompt Template

Given a main question, an uncertain LLM-generated thinking Cot that considers all the entities, a
few split questions that you can use one by one and finally obtain the final answer, the associated
accuracy retrieved knowledge paths from the Related paths section, and main topic entities. Your
task is to summarize the provided knowledge triple in the Related paths section and generate a chain
of thoughts by the knowledge triple related to the main topic entities of the question, which will
used for generating the answer for the main question and split question further. You have to make
sure you summarize correctly by using the provided knowledge triple, you can only use the entity
with id from the given path and you can not skip in steps.

In-Context Few-shot

Q: {Query}

Think Indicator:{Think Indicator}
Split Question:{Split Question}
Related Paths:{Related Paths}

A:

{Related_Paths} has the same format with the {Candidate_Paths} before.

Question Answering Evaluation Prompt Template

Given a main question, an uncertain LLM-generated thinking Cot that considers all the entities, a
few split questions that you can use and finally obtain the final answer, and the associated retrieved
knowledge graph path, {set of entities (with id start with "m.")} -> {set of relationships} -> {set of
entities(with id start with "m.")}. Your task is to determine if this knowledge graph path is sufficient to
answer the given split question first then the main question. If it’s sufficient, you need to respond {Yes}
and provide the answer to the main question. If the answer is obtained from the given knowledge
path, it should be the entity name from the path. Otherwise, you need to response {No}, then explain
the reason.

In-Context Few-shot

Q: {Query}

Think Indicator:{Think Indicator}
Split Question:{Split Question}
Related Paths:{Related Paths}

A:

Question Answering Generation Prompt Template

Given a main question, an uncertain LLM-generated thinking Cot that considers all the entities, a few
split questions that you can use one by one and finally obtain the final answer, and the associated
retrieved knowledge graph path, {set of entities (with id start with "m.")} -> {set of relationships}
-> {set of entities(with id start with "m.")}, Your task is to generate the answer based on the given
knowledge graph path and your own knowledge.

In-Context Few-shot

Q: {Query}

Think Indicator:{Think Indicator}
Split Question:{Split Question}
Related Paths:{Related Paths}

A:

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Method
	4.1 Initialization
	4.2 Exploration
	4.3 Path Pruning
	4.4 Question Answering

	5 Experiments
	5.1 Main Results
	5.2 Ablation Study
	5.3 Effectiveness Evaluation

	6 Conclusion
	7 Acknowledgment
	References
	A Algorithm
	A.1 Exploration
	A.2 Path Pruning

	B Experiment
	B.1 Additional Ablation Study
	B.2 Reasoning Faithfulness Analysis
	B.3 Error Analysis
	B.4 Efficiency Analysis
	B.5 Case Study

	C Experiment Details
	D SPARQL
	D.1 1-hop Entity and Relation Search
	D.2 Short Textual Description
	D.3 1-hop Subgraph Search

	E Prompts

